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Abstract

Touchscreen-based mobile devices such as smartphones and
tablets are used daily by billions of people for productivity
and entertainment. This paper uncovers a new security threat
posed by a side-channel leakage through the power line, called
Charger-Surfing, which targets these touchscreen devices. We
reveal that while a smartphone is charging, its power trace,
which can be measured via the USB charging cable, leaks
information about the dynamic content on its screen. This
information can be utilized to determine the location on the
touchscreen where an animation is played by the mobile OS
to indicate, for instance, that a button press has been regis-
tered. We develop a portable, low cost power trace collection
system for the side-channel construction. This leakage chan-
nel is thoroughly evaluated on various smartphones running
Android or iOS, equipped with the two most commonly used
screen technologies (LCD and OLED). We validate the ef-
fectiveness of Charger-Surfing by conducting a case study
on a passcode unlock screen. Our experiments show that an
adversary can exploit Charger-Surfing across a wide range of
smartphone models to achieve an average accuracy of 98.7%
for single button inference, and an average of 95.1% or 92.8%
accuracy on the first attempt when cracking a victim’s 4-digit
or 6-digit passcode, respectively. The inference accuracy in-
creases to 99.3% (4-digit) or 96.9% (6-digit) within five trials.
We further demonstrate the robustness of Charger-Surfing in
realistic settings and discuss countermeasures against it.

1 Introduction

Touchscreen devices such as smartphones and tablets have
become a daily tool for a variety of business and entertainment
activities, including mailing, banking, browsing, gaming, and
photography. While these devices have ushered in an era of
great convenience, their rich functionality has lead to ever-
increasing usage, draining batteries faster, and necessitating
that users seek out areas to charge their smartphones. One
study suggests that city dwellers charge their phones multi-
ple times per day [6]. To allow users to conveniently charge
their devices, facilities such as USB power lines and charging

stations have been widely deployed in public areas, including
airports [10], parks [2, 11], hotels [3], and hospitals [1]. The
market for shareable power banks is also thriving [7], allow-
ing users to simply scan a QR code to rent a public power
bank and charge their devices.

Despite their convenience, USB charging interfaces and
stations also introduce a number of security threats, as the
USB interface in a public area is not under the user’s con-
trol [8]. A typical USB interface is composed of one or more
(depending on the protocol) differential data lines for data
transmission and a 5V and ground line for delivering power.
Previously it has been demonstrated that the data transmitted
over the data line can be sniffed [45] or monitored through the
crosstalk leakage on the power line [54]. Adversaries can also
extract power consumption information from the power line
to infer coarse-grained information, such as internet browsing
history [25] or password length [65]. These disclosed secu-
rity threats, however, do not stop users from heavily utilizing
USB charging facilities in public areas, since charging usually
involves no data transfer over the USB data line.

In this work, we reveal that USB charging in public areas
can pose far more serious threats than previously believed. We
show, for the first time, that the signals on the power line form
a side channel and leak far more fine-grained information
than previously believed. Specifically, the power consump-
tion information is highly correlated with the activities on
the touchscreen. Leveraging this side channel, built on the
dynamic power signals, adversaries can precisely identify the
location of virtual button presses on the touchscreen, with
which they can steal extremely sensitive data such as a user’s
passcode. We call this security threat Charger-Surfing. We
conduct a series of experiments to demonstrate the existence
of fine-grained information leakage tied to smartphone touch-
screen activity. For the construction of the Charger-Surfing
channel, we develop a wireless, low cost, and portable power
trace capture system using commercial-off-the-shelf (COTS)
hardware. To further demonstrate that Charger-Surfing is a
real threat, we perform a case study on a numeric passcode un-
lock screen and show that Charger-Surfing is able to extract a



passcode on both Android and iOS devices by leveraging sig-
nal processing and neural network techniques. We thoroughly
assess this security threat on different types of smartphones,
multiple phones of the same model, and across different users.
Our results show that Charger-Surfing can achieve an aver-
age accuracy of 98.7% for single button inference on all the
tested smartphones. For an unknown user1, Charger-Surfing
has, on average, a 95.1% or 92.8% chance to accurately crack
a 4-digit or 6-digit passcode on its first attempt, respectively,
and a 99.3% (4-digit) or 96.9% (6-digit) success rate within
five trials.

In a nutshell, this is the first work that demonstrates fine-
grained information leakage over the power line of the USB
charging cable regarding the content of the touchscreen. More
importantly, our studies show that the effectiveness of Charger-
Surfing is victim-independent, meaning that adversaries can
train the neural network using touchscreen data on their own
smartphones with different configurations without any prior
knowledge of a victim. The major contributions of this work
include:

• A comprehensive study on the dynamic power usage of
the touchscreen to demonstrate the location, causes, and
granularity of information leakage over the USB power
line. To the best of our knowledge, this is the first work to
explore the classification of dynamic screen animations
and induced information leakage.

• A new security threat, Charger-Surfing, which exploits a
side channel through the USB power line to infer user
interactions with the content on the touchscreen. The
techniques used by Charger-Surfing for signal processing
and model learning are given.

• A portable microcontroller-based power trace capture
system using COTS hardware, which demonstrates the
feasibility of exploiting the disclosed leakage channel at
a low cost.

• A thorough evaluation on multiple smartphones, show-
ing high accuracy in inferring a victim’s private informa-
tion, such as their passcode, without any prior knowledge
of the victim, and that this leakage vulnerability is not
tied to a specific smartphone or mobile OS.

The rest of this paper is organized as follows. Section 2
presents our threat model and a brief primer on USB charging,
touchscreen technology, and touchscreen animations. The
existence of fine-grained information leakage over the USB
power line is demonstrated in Section 3. The security threat
posed by Charger-Surfing is detailed in Section 4, followed
by an in-depth case study in Section 5. Section 6 discusses
the attack practicality of Charger-Surfing. Section 7 describes

1To show the effectiveness of Charger-Surfing, the model of a target
device is trained with the data created by an adversary and tested with victim
users whose data were not used to train the model.

countermeasures against Charger-Surfing. Section 8 surveys
related work, and finally, Section 9 concludes the paper.

2 Threat Model and Background

This section first presents the threat model, and then dis-
cusses the various components of a smart device involved in
the new side channel, including (1) USB charging, (2) touch-
screen technology, focusing on the dynamic power consumed
when displaying different colors, and (3) the dynamic content
of the touchscreen that could be potentially leaked.

2.1 Threat Model

The objective of this work is to highlight the vulnerabilities
of the power line side-channel in smartphones which, if ex-
ploited, can lead to serious information leakage. We consider
a realistic scenario in public places, where users charge their
smartphones with a USB charger that is not owned/controlled
by themselves. The USB charger could be a charging sta-
tion in a public area, such as airports (Figure 1a), or simply
an interface where users bring their own USB cables (Fig-
ure 1b). It could also be a shareable power bank rented from
a third-party (Figure 1c), or the USB outlets provided in a
hotel (Figure 1d). The USB charger provides the standard
functionality (i.e., charging) and looks ordinary.

However, since these chargers are controlled by third-
parties, the power consumption of the connected device could
be monitored by a device hidden inside the packaging or be-
hind the charging interface. The voltage monitor would not
cause any adverse impact to the charging speed, and would
thus be quite stealthy. With a low power microcontroller con-
cealed inside the packaging, power traces can be recorded, or
streamed wirelessly, for analysis.

Finally, we assume that adversaries have no prior knowl-
edge of a specific victim, and have no need or have never had
the chance to collect the power trace of the victim’s smart-
phone. However, we assume that adversaries can easily profile
the power dynamics of most popular smartphone models be-
forehand, enabling them to attack a wide range of smartphone
users.

Security Threats Posed by Leakage. We observe that the
dynamic power trace of a smartphone is highly correlated
to the animation played on the touchscreen. Unfortunately,
leaking the animations played on the touchscreen could cause
severe security threats. The owner of such a specialized “surf-
ing” charger can steal a victim’s private data entered through
the touchscreen, such as passcode, credit card number, and
banking information. To expose such threats, we demonstrate
Charger-Surfing’s capability in inferring a numeric passcode.

While there are a myriad of potential biometric lock mecha-
nisms available (fingerprints, faceID, etc.), many of these can
be deceived [5, 9] and require a backup PIN (personal identi-
fication number) code if they are unavailable (gloves, sweat,
etc.). Other authentication mechanisms such as Android’s



pattern-based lock are not available on all phones and have
been shown to be less secure than a PIN code [12]. Thus, we
focus on the passcode-based lock as it is the most widely used
primary or secondary authentication mechanism to unlock
touchscreen devices, and it acts as one of the only barriers to
gain complete control of a smartphone.

A passcode is extremely valuable to a dedicated adversary.
When a victim can be easily identified (e.g., using a USB
port at a hotel room), knowledge of the passcode would be
sufficient for an adversary with physical access (e.g., evil

maid attack [4]) to the victim’s smartphone to steal private
information or even reset other online passwords (e.g., Apple
ID and iCloud passwords). Even for an adversary without
physical access (e.g., a shareable power bank), a compromised
passcode could still lead to severe consequences, as users
tend to reuse their passcodes (recent studies show that each
passcode is reused around 5 times [31]) and a smartphone’s
passcode may be reused as the PIN code of a credit/debit
card or online payment system (e.g., Apple Pay or Alipay).
Overall, there are many possible real scenarios, where this
type of information would be very useful to law enforcement
or an adversary for espionage, fraud, identity theft, etc.

2.2 USB Charging

USB has become a standard interface for charging portable
devices such as smartphones, while enabling serial commu-
nications at the same time. Standard USB plugs contain four
pins and a shield: one pin delivers +5VDC [51], one pin
connects to the shield forming the ground, while the other
two pins are used for differential data transmission and carry
negligible current when charging the battery. Newer USB
protocols include more differential data pairs, but leave the
+5VDC and ground pins the same. When charging a device,
its battery enters the charging state, and the device’s power
is supplied not from the battery but from the power source
connected by the USB power line.

2.3 LCD/OLED Touchscreen Technology

The two major touchscreen technologies are Liquid Crys-
tal Display (LCD) and Organic Light Emitting Diodes
(OLED). Both technologies have many improvements or
extensions, such as Active-Matrix Organic Light-Emitting
Diode (AMOLED), Super AMOLED, and In-Plane Switching
(IPS) LCD. The power consumption profile of these touch-
screen technologies is reviewed below [21].

LCD has three major components, a backlight that is al-
ways on, vertically polarized filters, and liquid crystals. The
liquid crystals are charged to different voltages to display
different colors. Specifically, to display a black pixel, the crys-
tals are charged with the highest voltage. This voltage aligns
the crystals horizontally, allowing only horizontally polarized
light through. As the filter layer is vertically polarized, no
light can shine through and a black pixel is produced. To dis-
play a white pixel, the crystal layer voltage is relaxed, aligning

(a) USB charging station (b) USB charging interface

(c) Shareable Power Bank (d) USB charging in hotel

Figure 1: USB charging in public or shareable environments.

it vertically, allowing light to pass through the filter. OLED

displays utilize organic molecules to produce holes and elec-
trons to create light in an emissive layer. Individual OLEDs
are used to produce each pixel. To display a black pixel, the
OLED must enter a low power state, while displaying a white
pixel requires the OLED to enter a high power state.

As LCDs and OLEDs use dissimilar mechanisms to pro-
duce an image on a screen, they generate vastly different
power traces to produce the same image. Specifically, to cre-
ate an animation of a white dot, most pixels will be black. The
black LCD pixels will be in a high power state, and the pixels
that make up the white dot in a low power state. OLEDs, on
the other hand, will have their black pixels in a low power
state, and their white pixels in a high power state. Thus, if it
were possible to observe the voltages applied to the individual
pixels, the two screen technologies should have inverse values
when they are utilized to display an identical image.

2.4 Animations on the Touchscreen

Smartphones with touchscreen technology always provide
graphical interfaces (e.g., the lock screen, the telephone dial
pad, and the text entry keyboard in applications) for users to
input data, and also use real-time animations to inform the
users that their inputs have been registered. Most of these
animations occur on a static screen (i.e., no other animation
is playing) and always at the same location on the screen (i.e.,
the digit/letter does not move around). As reviewed before,
displaying lighter or darker pixels consumes different amounts
of power in LCD and OLED technologies. Furthermore, LCD
and OLED screens refresh from left to right, row by row,
leading to the potential that the dynamic power consumption,
which can be measured through the USB charging cable, may
leak the location on the touchscreen where a virtual button is
pressed.
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Figure 2: Power leakage on the USB power
line when charging a Motorola G4. Sam-
pling rate is 125 KHz. The signal is filtered
with a moving mean filter to increase clarity.
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Figure 3: Averaged voltage readings for (a) Motorola G4 with LCD screen and
(b) Samsung Galaxy Nexus with AMOLED screen, when displaying flickering
white bars on the top, middle, and bottom rows, as well as left, middle, and
right columns, of a black screen.

3 Power Line Leakage Exploration

Smartphones are sophisticated computing platforms with a
complex multi-core System-on-a-Chip (SoC) handling vari-
ous device drivers for touchscreens, cameras, sensors, etc.
Previous research has shown that the display (i.e., touch-
screen) and CPU/GPU are among the top contributors to
the overall power consumption in a smartphone [20]. While
previous work has shown that the power consumption of a
smartphone leaks information regarding the activities on the
touchscreen [64, 65], such information leakage is of coarse
granularity (e.g., internet browsing history [65] or password
length [64]). In comparison, the goal of this work is to demon-
strate fine-grained information leakage, specifically, the abil-
ity to identify the exact locations of button presses and extract
a user’s input (e.g., a passcode) with dynamic power traces.

To examine the power leakage, we conduct a series of exper-
iments utilizing a Motorola G4 connected to a USB charging
cable in which the ground cable has been cut and spliced with
a small resistor. An oscilloscope is used to monitor the voltage
across this resistor and thereby the current utilization of the
device. This section presents our experimental findings, high-
lights the leakage patterns, and further shows that the state
of the smartphone’s battery will not cause any attenuation
effects on the side channel.

3.1 Button Press Detection

To explore the potential for identifying button presses, our
first study observes the signal on the USB cable while charg-
ing a smartphone, utilizing the aforementioned oscilloscope
and charging cable setup. The dynamic power signal is highly
correlated with device activity, as illustrated in Figure 2. When
the smartphone is asleep, there is a steady current utilization
with minimal noise. Once the phone is perturbed from the
sleep state, there is an immediate increase in its current uti-
lization. When the phone enters the lock screen, the signal
shows large spikes at different intervals. Finally, when the
user starts to tap the screen and enter a passcode, the signal
exhibits a clear rise and fall upon each button press.

This experiment not only demonstrates the information
leakage on the power line, but furthermore illustrates two
important properties underpinning our following studies: (1)
from the signal measured on the USB power line, one can
clearly detect the powering-on of the screen and the exact
starting point of the button-press sequence; (2) in the lock
screen mode, each button press made by a user is clearly
observable and separable.

3.2 Button Press Location Identification

The power usage in Figure 2 shows a significant elevation
when a button is pressed. This elevated usage is caused by
the activities of the mobile OS. Specifically, once the mobile
OS has captured an input action from the user, it provides
visual feedback by rendering and drawing an animation on the
screen, causing pixels to rapidly change colors and inducing
two significantly different voltage states. On the lock screen,
the animation for each button press is similar, albeit in a
different location. These similar animations cause the power
leakage to exhibit similar signals for different buttons, as the
blue and grey areas in Figure 2 depict.

The unique contribution of this work is to discriminate
the “similar-looking” signals and extract the location of the
animation via power leakage. To examine this potential, we
have designed a custom Android application running on two
smartphones with different screen technologies: the Motorola
G4 with an LCD screen, and the Samsung Galaxy Nexus
with an AMOLED screen. The application divides the screen
into six portions (i.e., top, middle, and bottom rows, as well
as left, middle, and right columns) and displays, on a black
background, flickering white bars that fill each portion of the
screen in their respective tests. To mimic the way the Android
OS renders user interface elements and the lock screen, we
set the hardwareAccelerated developer flag to ensure that
the GPU is involved in image rendering.

The gathered signal exhibits a steady 60Hz signal that de-
notes the beginning and end of a refresh cycle2. We isolate

2The screen constantly refreshes all pixels with a specific rate (typically
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Figure 4: Comparison of voltage readings when pressing buttons on the lock screen of a Motorola G4 in two cases: fully charged
vs charging. Sampling rate is 125 KHz. (a) depicts the raw unfiltered signal. (b) utilizes a high pass filter with a cutoff frequency
of 60 Hz to remove the offset. (c) presents the Fourier transform of the filtered signal, demonstrating that the charging status of
the phone does not affect the signal integrity.

the 60Hz signal within the sample stream and average all of
the frames to reduce noise for better visual effects. The results
are presented in Figure 3, which zooms in on a 2ms portion of
the signals to better display the subtle differences. As can be
seen, the voltage readings show that in both LCD and OLED
technologies, there is an appreciable difference in the power
usage of displaying the same image on different portions of
the screen. These experiments demonstrate the great poten-
tial for inferring the location of the animation played on the
screen when a user presses a virtual button, by exploiting the
power leakage on the USB power line.

3.3 Impact of Battery Charging

One important question is whether the state of the smart-
phone’s battery will cause any attenuation effects on the power
side channel. This is critical as the smartphones charged at
public USB charging facilities will likely have arbitrary bat-
tery levels. Once plugged into a charger, the smartphone draws
its power from the charger and uses any excess power to
charge its battery. Not only will a charging battery lead to a
higher power draw than a fully charged battery, but the battery
charging circuitry might attenuate the power leakage informa-
tion, since high frequency signals contained in current spikes
might be filtered by the reactive components of the battery
charging controller.

To study the difference between a fully charged phone and
a charging phone, we collect the power traces under the same
workload, i.e., when entering a single digit on the virtual key-
pad repeatedly. The power traces are presented in Figure 4a.
The figure shows a positive offset for the “charging” case,
demonstrating that a larger base amount of current is being
drawn by the phone to perform its tasks and additionally
charge the battery. However, upon applying a high-pass filter
to remove all frequencies under 60Hz that correspond to the

60Hz), in a manner from left to right, and from top to bottom. This phe-
nomenon can be observed with a slow motion camera, such as the one on an
iPhone, which films at 240 frames per second.

DC offset in the signal, the filtered signals of the two phones
match each other quite well, as shown in Figure 4b. We also
conduct a Fourier transform on both signals, and display the
resulting frequency spectrum in Figure 4c. In the figure, the
high-band frequency signals still exist in both cases, preserv-
ing the high speed dynamic fluctuations attributed to the user
touching the screen. Although the charging battery illustrates
a slightly smoothed frequency signal, there is no obvious vi-
sual difference in the frequency spectrum between a charging
phone and a fully charged phone.

4 Sensitive Information Inference

This section presents the method with which Charger-
Surfing exploits the fine-grained power line leakage described
above to infer button presses made by a smartphone user.

Figure 5 presents the working mechanism of Charger-
Surfing. An adversary first acquires raw signals from a “surf-
ing" charger with a hidden voltage monitor (provided in
step ❶). The raw signal is searched to detect a button se-
quence (step ❷), which is further isolated to individual but-
tons (step ❸). Next, a neural network processes the signal to
determines the target device model (step ❹). This information
is used to select the exact model for button identification from
a set of pre-trained neural networks. The button press signal
is preprocessed (step ❺) for the phone model specific neural
network, which finally infers the virtual buttons pressed by
the user on the touchscreen (step ❻). The rest of this section
details the techniques used in each step of Charger-Surfing.

4.1 Raw Signal Acquisition

The prerequisite for sensitive information inference is to
covertly and comprehensively capture the power trace of the
user’s smartphone without losing any useful information. In
Charger-Surfing, this is performed at step ❶, as shown in
Figure 5, via a hidden voltage monitor that is attached to the
charger without a user’s knowledge.



Figure 5: Overview of Charger-Surfing’s working flow.

The voltage monitor should be able to collect the raw signal
of the charging device at a sampling frequency that is care-
fully determined. Utilizing a very high frequency will result in
unnecessarily large and cumbersome data, while sampling too
slowly will miss key information. There are two factors that
affect the sampling frequency: the refresh cycle of the screen
and the resolution of the screen. As mentioned in Section 3.2,
screens typically refresh pixel by pixel, from left to right and
from top to bottom. To observe both the row and column
portion of an animation, it is preferable to sample at a rate
that is slightly greater (or less) than the per row update speed,
so that (1) the power utilization can be monitored on a per row
basis, and (2) samples can be taken in different columns as
the refresh moves down the screen. Most of today’s flagship
smartphones use a screen resolution between 1920×1080 and
2960×1440 and have a refresh rate of 60 Hz. A single sample
per row would require a sample rate in the range of 115–178
KHz. Our design uses a sample rate at 125 KHz, which takes
one sample per every 0.9 – 1.4 rows on many flagship smart-
phones. This rate ensures that consecutive samples are not
taken on the same vertical line, thus providing more useful
location information.

4.2 Button Sequence Detection

Step ❷ of Charger-Surfing processes the captured power
trace and isolates the portions of the signal corresponding to
the sequence of button presses.

When the user presses a virtual button on the touchscreen,
the mobile OS determines the location of the input and ac-
knowledges the user by lighting up the button (or playing
an animation around it). With a text or numeric entry, it also
displays the corresponding letter or number on the screen.

Each of these activities increases the power consumption,
collectively generating a visible spike in the captured raw
power utilization signal, as shown in Figure 2. To detect these
signals, Charger-Surfing utilizes a moving mean filter and a
level detector. The filter removes noise from signals, allowing
the level detector to isolate portions of the signal belonging to
a button press sequence once the level is above an empirically
determined threshold.

4.3 Individual Button Isolation

Upon detecting a sequence of button presses, Charger-
Surfing moves to step ❸ which detects and isolates each
individual button press. Since users press buttons at different
rates, inferring individual button signals is much easier and
more practical than blindly classifying the entire sequence
with button presses possibly occurring at any arbitrary speed.

The process of detecting individual presses also utilizes
a combination of a moving average filter and a level detec-
tor. When passed through a moving average filter, the button
sequence displays spikes, each of which corresponds to the
beginning of a button press, as shown in Figure 6.

Depending on the button press rate, the raw power signal
(e.g., the top picture in Figure 6) may show either a single
and isolated press, or multiple overlapping button presses.
In the latter case, it is important to select the signal portion

containing the most distinctive information. The lower pic-
ture of Figure 6 shows the pattern of a single button press,
wherein the biggest changes occur at the beginning of the
signal. This trend is consistent with the typical behavior of
the screen, which is usually static but comes alive as soon
as a button is pressed. Accordingly, for overlapping button
presses, Charger-Surfing discards the end of the signal and
keeps the beginning, which is the most important, distinctive,
and potentially identifiable portion.

4.4 Phone Detection

In the envisioned threat model, adversaries can profile the
power charging dynamics of most popular smartphone models
beforehand, and pre-train a neural network model for each
of these popular phones. A victim’s signal collected over the
USB power line can be fed into the pre-trained model, once
the phone type is determined.

While the steps ❶–❸ performed up to this point are gener-
ally applicable to all smartphones, step ❹ of Charger-Surfing
focuses on detecting the phone type. This task is much eas-
ier than classifying individual button presses as the screen
technology, the screen resolution, and different components
within the phone (CPU, GPU, screen driver, etc.) lead to vastly
different power trace patterns, as demonstrated in Figure 3. To
accomplish this identification task, we utilize a neural network
that is trained with the isolated button press signals. The raw
signal is passed through a high-pass filter to preserve the high-
frequency components, which are highly correlated to the
phone model, while removing the less informative DC offsets
that can be a result of brightness changes, charging/charged,
or different charging rates.

As the victim’s phone model may not belong to the set
that the attacker utilized to train Charger-Surfing, the system
further examines the confidence values of each output class
when inferring the phone model. If the confidence values
are all low, it will not pass the samples to the phone-specific
neural networks for classification.



Figure 6: The top displays the raw signal of multiple over-
lapping button presses. The bottom demonstrates how peak
detection can be utilized to determine non-overlapping por-
tions of individual button presses. The signal is collected from
Motorola G4 and filtered for clarity.

4.5 Signal Preprocessing

After determining the phone model, Charger-Surfing then
scales and standardizes the power signal in step ❺ following
the characteristics of the specific phone model. The signals
gathered from the USB power line are commonly between 0
and 100 mV. After passing through the high-pass filter, the
signal is mostly distributed between -50 mV and 50 mV. We
preprocess the data with a scaler designed for the target phone
model, which is created by pre-training with a few samples
from the adversary’s own device. The resultant signal’s range
is between -1 and 1, which typically leads to the best inference
results for most neural networks.

4.6 Animation Inference

In the final step (i.e., step ❻ in Figure 6), the preprocessed
power signal is sent to a neural network trained for that spe-
cific type of device, to reconstruct the multi-press sequence
that the victim types into the device.

As the collected signal is a one-dimensional time series
of voltage measurements, Charger-Surfing utilizes a one-
dimensional convolutional neural network (CNN). The net-
work includes a repeated series of convolutional and max-
pooling layers, followed by a softmax regression layer, which
classifies the input signal into one of the possible buttons and
provides a confidence value associated with each class.

Why Utilize a CNN? CNNs are known for their high ac-
curacy when processing data with spatial correlation and clas-
sifying time series data [36]. Furthermore, as discussed in
Section 4.1, Charger-Surfing uses a single sampling rate for
all the phones and the sampling rate (125KHz) is chosen to
modulate around the screen rather than continually sampling
the same pixels. This implies that for phones with different

screen resolutions, features of button presses appear at dif-
ferent locations of the power signal. CNNs are well suited to
recognize features that can be found in any area of a signal.

Model Classifier Configuration. An important consider-
ation of any CNN is the size of the convolutional kernels.
Small kernels may not be able to recognize features that man-
ifest themselves over a large portion of the input signal, while
large kernels may be too coarse, missing the fine details and
features of an input signal.

The ideal size of the convolutional kernels depends on the
size of the features in the power trace, which in turn depends
on the sampling rate, screen layout, and size of the animation

to be detected. If one desires to classify individual keys on the
device text entry keyboard, for example, it would be necessary
to calculate the size of the key press animation with respect
to the screen size and modify the kernel size accordingly.
This allows the first layer of the network to capture features
that are large enough to identify a button press, while not
being so large as to oversimplify or miss a feature, and not
being so small as to only capture noise. Furthermore, our
CNN design adopts a typical architecture consisting of sets
of a convolutional layer followed by a max-pooling layer,
which potentially increases the receptive field3 of the network.
This allows the subsequent layers of the network to leverage
the highlighted features and correlate their location across
multiple frames of the signal when inferring the key press.

5 Case Study: Passcode Inference

To demonstrate that Charger-Surfing poses a genuine secu-
rity threat, we conduct a case study of passcode inference. We
divide our evaluation into two major sections. This section
details the experimental evaluation for a broader range of de-
vices, including data collection, single button inference, 4- and
6-digit passcode inference, and impact of sampling frequency
upon inference accuracy, demonstrating the wide applicabil-
ity of Charger-Surfing. Section 6 tightens the scope of our
evaluations, focusing on a low-cost hardware implementa-
tion of the Charger-Surfing attack, its insensitivity to different
smartphone configuration variables (wallpapers, brightness,
vibration, charging status), and the transferability of the attack
between different smartphones of the same model. In total,
we gather data from 33 volunteers4 and on 6 different devices.
Our participants are about 30% female, including members of
varied races, heights, and weights. The age of our participants
ranges from 20 to 60 years old. This section utilizes the data
of 15 volunteers and four devices, while Section 6 uses an
additional set of 18 volunteers and two devices.

3The receptive field is the portion of the input signal affecting the current
convolutional layer.

4The human-user-involved experiments have been filed and approved
by the Institutional Review Board (IRB) to ensure participants are treated
ethically.



5.1 Data Collection

To ensure that Charger-Surfing is not tied to a specific
phone model, screen technology, or mobile OS, we collect
data from a spectrum of smartphones running both iOS and
Android OS, listed in Table 9 in Appendix A. For Android
devices, the Galaxy Nexus represents smartphones with aging
hardware, while the Motorola G4 provides an example of a
more recent and advanced smartphone. A similar strategy is
applied in selecting the iOS devices. The iPhone 6+ represents
an aging but still widely used device, while the iPhone 8+
provides an example of a more recent smartphone that shares
a large amount of hardware with the current iPhone SE 2nd
generation released in 2020.

To assess the impact that individual users might have on the
accuracy of Charger-Surfing, we collected input data from 15
volunteers who regularly use passcode based authentication in
smartphones. Our participants have diverse backgrounds and
are varied in height, weight, gender, race, and age. The goal
is to demonstrate that Charger-Surfing is victim-independent,
as the different users likely interact with the same smart-
phone differently (e.g., placing their finger on different areas
of the button or holding their finger on the screen for differ-
ent amounts of time), which could lead to variations in the
duration of the animations played on the smartphones tested.
Each user was tasked to input a pre-determined sequence of
200+ buttons on the numerical lock screen. The sequence was
designed to gather a uniform distribution of button presses
such that no button had a disproportionate amount of samples.

Our data collection utilizes a modified charging cable and
a Tektronix MDO4024C oscilloscope. The charging cable
is modified by cutting the ground wire and inserting a 0.3Ω

resistor. The oscilloscope is used to measure the voltage drop
across the resistor, providing a fine-grained and repeatable
method of observation. It is configured to sample at a rate of
125,000 samples per second.

5.2 Classifier Configuration and Training

As discussed in Section 4.6, for the best performance, it is
necessary to tune the kernel sizes of the CNN based on the
screen layouts and animations that are being classified.

Figure 7 presents the typical lock screen layouts imple-
mented by Android and iOS systems as well as the anima-
tions on the lock screen. As shown, the animations caused by
a button press range from about 1/10 of the vertical screen
height on iPhones (button 5 in Figure 7a) to about 1/5 of the
vertical screen height on Android phones (button 5 in Fig-
ure 7b). With a sampling rate of 2,083 samples per frame5, the
most pertinent features for button identification are within 208
(iPhone) - 416 (Android) samples. Thus, when considering

5The power trace signal is sampled at 125KHz, and the lock screen re-
freshes at a rate of 60Hz. Under this configuration, 2,083 samples are gathered
within each refresh cycle. Each sample contains information about the con-
tent of the screen progressing vertically, as the screen refreshes from top to
bottom.

(a) iPhone (b) Android

Figure 7: Passcode lock screen layout and animation.

the receptive field of the network, we choose an initial kernel
size of 50 for the iPhone network and 100 for the Android
network. This sizing configuration ensures that we capture
the smaller features of the signal in the initial layers of the
network while still considering both the larger features of the
signal in intermediate layers and the location on the screen
across multiple frames of animation in the final layer. De-
tailed network configurations are listed in Tables 10 and 11
in Appendix A.

Our threat model assumes that adversaries are unable to
obtain the victim’s data before training the system, and thus
can only train the classifier using their own collected data. To
emulate this scenario, we divide the users into two separate
sets: one set for training (i.e., adversary) and the other set
for testing (i.e., victim). To examine the robustness of the
network to the composition of the training data, we randomly
select five users to create the training set. The remaining 10
users form the testing set, ensuring that there is no overlap
between the training and testing users. We train five neural
networks for each device such that the ith (1 ≤ i ≤ 5) network
is trained with the data from i different users. In testing, each
network’s performance is evaluated on the 10 testing users,
and the average accuracy is reported.

5.3 Phone Identification

Our experimental steps closely follow the process in Fig-
ure 5. After the signal is acquired, it is passed through button
isolation (as described in Section 4.3). The next step is to
correctly identify the target phone model so that the signal
can be processed by the appropriate preprocessing system
(Section 4.5) and classifier.

We train a primary neural network using high-pass filtered
data from a subset of the collected users and test on the data
from the remaining users. Our results show that the network
can determine the correct phone model 100% of the time.
This identification step is also applicable to phones that might
run multiple OS versions. Different OS versions would be
detected and classified at this step before being passed to the
more specific secondary neural networks.



Table 1: Single Button Accuracy

# of
Training

Users

Phone
Motorola

G4
Galaxy
Nexus

iPhone 6+ iPhone 8+

1 82.0% 50.0% 23.8% 44.6%
2 90.0% 95.0% 93.3% 67.1%
3 99.6% 99.1% 96.9% 88.7%
4 99.7% 99.4% 98.5% 94.5%
5 99.9% 99.6% 99.5% 95.8%

(a) Press button on the left side. (b) Press button on the right side.

Figure 8: Android’s animation on touching different parts of
a button.

5.4 Single Button Inference

We first evaluate the accuracy for inferring a single button
press, which is the most fundamental aspect of the system, as,
without the ability to robustly classify a single button, it is
impossible to accurately infer the entire passcode.

Table 1 lists the accuracy of a single button inference for
each smartphone. When the training data was collected from
only one user, we observe divergent accuracy results for differ-
ent phones, ranging from 23.8% for iPhone 6+ to 82.0% for
Motorola G4. Once we increase the training data size to two
users, however, there is a significant accuracy improvement
for single button inference: 67% for iPhone 8+ and more than
90% for all the other phones. The increasing accuracy trend
is mainly attributed to the differences in user behavior when
interacting with touchscreens, which can have direct effects
on the power usage of the screen. More specifically, Android
devices demonstrate spatial and temporal variations while
iOS devices demonstrate temporal and processing variations.
On the Android lock screen, the screen plays an animation
that depends on where users place their finger. An example
of this scenario is shown in Figure 8, where a user placing
the finger on the left or right side of the button can create
different animations. Furthermore, the longer the user holds
their finger in this position, the larger the darker white circle
grows. On iOS devices, when users press a button on the
lock screen, no matter where exactly they press it, the entire
button lights up completely and immediately. This animation
does not end until the user removes their finger, imparting
temporal variations to the recorded power trace. Furthermore,
devices newer than the iPhone 6S (such as the tested iPhone

Figure 9: Breakdown of actual and predicted button classifi-
cations for the Galaxy Nexus when trained with one user’s
data. An entry on row i and column j corresponds to button i

being classified as j.

8+) make use of so-called “3D-Touch” to measure the force
of the screen press. This extra processing and information
further introduces subtle noise or processing variations into
the measured signals.

The aforementioned user-oriented uncertainties and ran-
domness can be dramatically mitigated by integrating more
users into the training process. Once the neural network is
presented with a robust dataset demonstrating diverse user
behaviors, these abnormalities can be recognized and classi-
fied correctly. Table 1 confirms that by training on four users’
data, Charger-Surfing can achieve more than 94% accuracy
when classifying the single button presses of new users (i.e.,
the victims) for all devices. The average accuracy across all
four test phones for single button inference further reaches
98.7% when there are five training users. By this point, the
improvements demonstrate diminishing returns as more users
are included. This indicates that our system only requires a
few users’ training data to achieve near optimal accuracy.

5.5 Misclassification Analysis

To further evaluate the effectiveness of Charger-Surfing, we
examine how the neural networks perform when they guess
incorrectly. Figure 9 presents the confusion matrix of the
inference results of the Galaxy Nexus, when trained on only
one user’s data. The figure shows the actual pressed buttons
as rows and predicted buttons as columns. An entry on row i

and column j corresponds to button i being classified as j.
Figure 9 shows the highest prediction rate in the diagonal

for all buttons except for button 7, which can be classified
as 7 or 8 with equal probability of 0.45. Five buttons (0, 1,
6, 7, 9) demonstrate performance lower than 50%, however,
usually the incorrect inference is only off by a single row or
column, indicating that the screen region it guessed is correct.
Excellent examples of this phenomenon are the pairs (0,9)



(a) 1st Trial (b) 5th Trial (c) 10th Trial

Figure 10: Accuracy of 4-digit passcode inference.

(a) 1st Trial (b) 5th Trial (c) 10th Trial

Figure 11: Accuracy of 6-digit passcode inference.

and (7,8) that are frequently mis-predicted as one another.
In many buttons, the mis-predictions are not uniformly dis-

tributed but tend to cluster into one or two buttons, implying
that a second or third guess would result in the correct predic-
tion for these buttons. The results of the first three guesses of
the system trained by only one user’s data are shown in Ta-
ble 2. The second guess achieves an average accuracy increase
of 11.7%, and the third guess further increases accuracy by
an average of 9.9%. This rapid accumulation trend will assist
in the reducing the search space when classifying a user’s
passcode.

Table 2: Cumulative Accuracy of 3 Classification Attempts
for Single User Trained Model

Attempts
Phone

Motorola
G4

Galaxy
Nexus

iPhone 6+ iPhone 8+

1 82.0% 50.0% 23.9% 44.6%
2 86.6% 63.0% 40.6% 57.3%
3 89.0% 72.0% 51.9% 65.5%

5.6 Passcode Inference

With ability to classify single button presses, it is possible
to infer passcodes. Many Android and iOS smartphones allow
up to ten passcode attempts before erasing the content of a
device, thus we report the accuracy of Charger-Surfing in
inferring 4-digit and 6-digit passcodes within 10 trials.

4-digit passcode: We select 1,000 random 4-digit com-
binations to test the classifier. To construct the candidates

for a passcode guess, we examine the confidence vectors of
each single button inference in the passcode. We rank these
confidence vectors to produce the top candidates for each
press and then construct combinations of the top candidates
to produce guesses for the passcode. Figure 10 illustrates
the accuracy for 4-digit passcode inference. We utilize the
networks trained in Section 5.4, where each phone is trained
on its own network with i (1 ≤ i ≤ 5) users. Figures 10 (a),
(b), and (c) show the accuracy results after the first, fifth, and
tenth trials, respectively.

In a brute force attack scenario, the success rate on the first
trial is only 0.01%. By contrast, with only one user in the
training set, Charger-Surfing achieves an average success rate
of 13.9% on the first trial and a 20.8% success rate after the
10th trial. Clearly, there is a strong trend towards improved ac-
curacy as the number of training users increases, showing that
with more users, Charger-Surfing can develop a more general
and accurate model that is robust against irregularities caused
by user interactions with the smartphone. When two users
are involved in training, the average success rate increases
substantially, scoring 59.5% on the first trial and 75.8% by the
tenth trial. This improvement trend continues but slows down
as more users are included. Finally, it achieves an average
success rate of 95.1% on the first trial and 99.5% on the tenth
trials when trained with five users. The diminishing return
indicates a strong convergence of Charger-Surfing’s inference
accuracy with only a few users in the training set.

6-digit passcode: We further evaluate the effectiveness of
Charger-Surfing when cracking a longer, 6-digit passcode.
Similarly to the 4-digit case, we select 1,000 random 6-digit
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Figure 12: Impact of different sampling rates on single button
accuracy, based on 3-user data of Motorola G4.

combinations and test them against our inference system. Fig-
ures 11 (a), (b), and (c) illustrate the accuracy after the first,
fifth, and tenth trials, respectively. Although the search space
for a 6-digit passcode is much larger (a 6-digit passcode has
1,000,000 combinations), Charger-Surfing demonstrates high
success rates similar to those achieved when cracking a 4-
digit passcode. When trained on five users, the success rate
of the first trial is greater than 90% for all phones except the
iPhone 8+, which has an accuracy of 77.0%. Even for iPhone
8+, the success rate then increases to 90.3% after the fifth
trial; and the accuracy for all phones is more than 96% by the
tenth trial. In comparison to a brute force approach that has a
success rate of 0.001% within ten trials, Charger-Surfing is
more than 96,000 times more effective.

5.7 Impact of Sampling Frequency

As mentioned in Section 4.1, Charger-Surfing utilizes a
sampling rate of 125 KHz, which takes about 1 sample ev-
ery 0.9–1.4 rows on many flagship smartphone screens. As
sampling at a higher frequency requires more expensive and
powerful equipment, we examine the impact of sampling at
lower frequencies on single button inference accuracy. We
downsample the raw signal to different frequencies, and pre-
process the signal in the manner described in Section 4.5. The
neural networks are resized and retrained to work with the
data collected at reduced sampling rates.

Figure 12 illustrates the accuracy of single button inference
on a Motorola G4 using networks trained with three users. A
decreasing trend in accuracy can be seen when lowering the
sampling frequency. The drop is slow at first: when the sam-
pling rate decreases to 31.3 KHz, the accuracy degrades from
99.6% to 99.5%, a drop of only 0.1%. When the sampling
rate is reduced to 15.6 KHz, there is a larger drop in accuracy
but it still remains above 90%. However, further decreases in
the sampling rate leads to dramatic losses in accuracy.

To better understand the reason for the accuracy drop, we
further examine the row and column accuracy degradation6 as

6Row (column) accuracy is defined as the percentage of classifications
that fall within the correct row (column) (e.g., a ‘1’ that is misclassified as a
‘2’ is still in the correct row).

Table 3: Impact of sampling frequency on row, column, and
overall classification accuracy, based on 3-user data of Mo-
torola G4.

Accuracy
Frequency

(KHz)
Row Column Overall

62.5 99.4% 99.4% 99.3%
31.3 99.8% 99.6% 99.5%
15.6 98.5% 92.4% 92.3%
10.4 94.1% 62.3% 61.3%
7.8 85.3% 46.9% 43.0%
6.3 59.5% 38.5% 26.0%
3.9 30.8% 33.4% 9.9%

(a) iOS Keyboard (b) Android Keyboard

Figure 13: Android and iOS keyboards. Each keyboard has a
similar layout, with 4 rows of buttons. Each keyboard contains
a maximum of 10 buttons per row (top row).

the sampling rate decreases. The results are listed in Table 3.
It turns out that the column accuracy is the limiting factor.
While the row accuracy remains above 94% even at 10.4KHz,
the column accuracy degrades from 99.5% at 31.3KHz to
62.3% at 10.4KHz. Such a result is consistent with the screen
refresh behavior: as the screen refreshes row by row and from
left to right on each row, the row signal changes much slower
than the column signal. Thus, a decreased sampling rate can
still capture the row signal, but becomes incapable of fully
capturing the column signal.

5.8 Detection Granularity Analysis

So far we have demonstrated that by monitoring the power
usage of a charging smartphone, an adversary can extract the
location of animations on the touch screen, compromising a
user’s passcode. Another particularly enticing target is the
onscreen virtual keyboard. Each press of the keyboard pro-
vides feedback to the user by either displaying an enlarged
version of the pressed character or by darkening the pressed
key. Thus, an adversary with a voltage monitoring setup might
attempt to infer a user’s input by locating and classifying the
animations of the onscreen keyboard. However, one important
question remains: is Charger-Surfing able to achieve sufficient
precision for classifying smaller animations on the screen?



To gain a better understanding of the achievable precision
of Charger-Surfing, we examine the relationship among an-
imation positioning, animation size, and inference accuracy
at different sampling rates. Specifically, the results in Table 3
show that the column accuracy is the limiting factor in classifi-
cation accuracy. Using the examples of the onscreen keyboard
in Figure 13, we can see that both iOS and Android keyboards
have a maximum of 10 columns (top row) that must be clas-
sified accurately. Table 3 shows that a sampling rate of 31.3
KHz is required to accurately classify 3 columns. Thus, to
classify 10 columns, the sampling rate should be increased by
at least 10/3 times to around 105 KHz.

While this sampling rate ensures that the signal contains
enough information, it is equally important to tune the filter
size in the neural network for identifying the patterns present
in the data. As previously discussed in Section 5.2, the con-
volutional kernels must be sized such that they are smaller
than the number of samples that encompass the animation.
For example, in the iOS keyboard presented in Figure 13a,
each key takes up about 1/17th of the vertical space on the
screen. Using the sampling rate determined above, of 105
KHz, 1,750 samples are taken during each screen refresh.
Thus, each keypress animation can be recorded in about 103
samples. Leveraging our experience in training the CNN for
passcode inference (a kernel size of 50 for 208 samples, as
described in Section 5.2), a kernel size close to 25 should
provide an adequate starting point for tuning the network to
detect keyboard press animations.

6 Attack Practicality

The analysis on sampling rate shows the potential of devel-
oping a low-cost data acquisition system with cheap and com-
pact commercial off-the-self (COTS) hardware, which can be
easily integrated and hidden inside shared power banks or pub-
lic USB charging facilities, making the Charger-Surfing attack
more practical. In this section, we demonstrate the practicality
of Charger-Surfing by (1) detailing a portable, low-cost power
trace collection system, and (2) testing the system under dif-
ferent smartphone settings and across different devices of the
same model.

6.1 A Portable Data Collection System

We design and develop a portable, low-cost microcontroller-
based system for data acquisition, as shown in Figure 14. It
consists of an Espressif ESP32 chip with a dual-core Tensilica
Extensa LX6 processor, built-in WiFi, and Bluetooth radio. In
the system, the microcontroller is connected to a 10-bit analog-
to-digital converter (ADC) manufactured by Analog Devices
(AD7813). One of the ESP32 cores is dedicated to gathering
samples from the ADC, while the other core handles all WiFi
communication and data storage needs. The sampling rate is
configurable (up to 62.5KHz) and, as each sample is only 10
bits, the maximum data rate is quite low, at only 78.125KBps.
The cost of the whole data collection system is less than $20.

Figure 14: The portable, low-cost data collection setup. A
WiFi enabled microcontroller can send acquired data to a
custom webserver in real-time.

Table 4: Single Button and Passcode Inference Accuracy (5
training users / 15 testing users).

Single Button
Press

Passcode
Attempt Trial 4-Digit 6-Digit

1 98.6% 1 94.9% 92.4%
2 99.4% 5 97.4% 94.9%
3 99.6% 10 97.5% 96.3%

A Motorola G4 is used to test the accuracy and effective-
ness of this portable, low-cost data collection system. We set
the sampling rate to 62.5KHz, and collect button press data
from 20 different users. Based on the studies in Section 5, we
randomly select five users to train the network and validate
with the remaining 15 users. The results are shown in Table 4.
We can see that even with a low-end (less than $20) data
acquisition setup, an adversary can correctly identify single
button presses with 98.6% accuracy on the first attempt: a
drop of only 1.3% compared to a much more expensive, faster
sampling and bulky setup (e.g., an oscilloscope). For cracking
a 4-digit passcode, the system achieves an average accuracy
of 94.9% in the first attempt and 97.4% by the fifth attempt.
The results of cracking a 6-digit passcode are also promising:
an average accuracy of 92.4% in the first attempt and 96.3%
by the tenth attempt.

6.2 Testing of Varied Device Settings

In an attack scenario, it is unlikely that a victim’s device
is configured exactly like the attacker’s training device. For
example, it is likely that a victim has a different screen back-
ground, brightness setting, etc. To examine how these con-

Table 5: Single Button Inference Accuracy (5 training users /
1 testing user) with Varied Configurations.

Configuration
Static Wallpaper Brightness

Charge Haptics
1 2 0% 50% 100%

Accuracy
(1st Attempt)

99.3% 98.0% 98.0% 97.3% 100% 99.2% 100%



Table 6: Cross-device training and testing configurations.

Training Testing

Phone A Phone B
Users: 1,2 Users: 3-12

Wallpaper: 1,2,3 ⇒ Wallpaper: 4
100 Presses of

each button
Balanced 200

button sequence
Total: 6,000 Presses Total: 2,000 Presses

Table 7: iPhone 6+ cross device testing classification results.
2 training users on an iPhone 6+ and 10 testing users on a
different iPhone 6+.

Single Button
Press

Passcode
Attempt Trial 4-Digit 6-Digit

1 99.1% 1 96.5% 94.6%
2 99.4% 5 97.4% 95.6%
3 99.4% 10 97.4% 96.2%

figuration variations may affect the accuracy of the attacker
network, we test the network on a victim with different con-
figurations. We gather data from a Motorola G4 in which we,
one at a time, change the wallpaper (two different wallpapers),
modify the brightness (0%, 50%, 100%), use an uncharged
phone, and enable haptic feedback. We then test the data
against the network trained with 5 users in Section 6.1. The
results listed in Table 5 indicate that the configuration differ-
ence has very little impact upon the inference accuracy, which
remains above 97% for single button inference in all cases.
This demonstrates that Charger-Surfing is quite robust against
device configuration changes.

6.3 Cross Device Testing

To further demonstrate that Charger-Surfing poses a real
threat, we launch attacks under a more strict cross-device
scenario wherein attackers can only train the classifiers on
their own phone and then test them against a different phone
(i.e., a victim’s phone). Also, while attackers can collect data
from multiple different wallpapers during training, they might
not know the exact wallpaper used by the victim. This set of
‘cross-device’ experiments are conducted given two phone
models, iPhone 6+ (iOS 12.4) and iPhone 8+ (iOS 13.4). Un-
der each model, there are two phones (e.g., two iPhone 6+
phones) used separately for training and testing. For each
training phone at the attacker side, we have two users who
gather 100 presses for each button. We then train the model us-
ing three different wallpapers: black, white, and multi-colored.
For each testing phone at the victim side, we gather 200 test
presses from 10 users (different from the two users at the at-
tacker side), with wallpapers that are not used in training. The
exact training and testing configurations are listed in Table 6.

The obtained accuracy results of the two phone models,
iPhone 6+ and iPhone 8+, are presented in Tables 7 and 8, re-
spectively, demonstrating that both cross-device tests achieve

Table 8: iPhone 8+ cross device testing classification results.
2 training users on an iPhone 8+ and 10 testing users on a dif-
ferent iPhone 8+. High initial accuracy meant that subsequent
attempts realized minimal improvement.

Single Button
Press

Passcode
Attempt Trial 4-Digit 6-Digit

1 99.7% 1 99.0% 98.6%
2 99.8% 5 99.1% 98.6%
3 99.8% 10 99.1% 98.7%

greater than 99% accuracy on the first attempt when classi-
fying single buttons and greater than 94% accuracy when
classifying 6-digit passcodes. Note that the accuracy results
here are slightly higher than those in the oscilloscope-based
experiments shown in Section 5. This slight difference could
be caused by the different iOS versions (the oscilloscope
experiments are performed on older iOS versions), or oscillo-
scope vs ADC quantization at low voltages.

Overall, this set of experiments clearly indicate that
Charger-Surfing works well not only across different users
but across different devices of the same model, posing a real
security threat.

7 Countermeasures

Our experiments show that on different smartphones,
Charger-Surfing is highly effective at locating the button
presses on a touchscreen and inferring sensitive informa-
tion such as a user’s passcode. While it would be difficult
to completely fix the leakage channel, which is related to
USB charging and hardware, there exist some possible coun-
termeasures.

The side channel exploited by Charger-Surfing leaks in-
formation about dynamic motion on the touchscreen. This
attack is so effective as the layout of the lock screen is fixed:
the buttons for a passcode are in the same positions every
time the screen is activated. On the contrary, randomizing a
number’s position on the keypad for code entry would likely
hamper Charger-Surfing’s ability to detect a user’s sensitive
information. However, this position randomization may incon-
venience users as it will take more time for them to locate each
button. Furthermore, this approach scales poorly; randomiz-
ing a keyboard layout, for example, would be highly undesir-
able to users. Likewise, it is possible for smartphone vendors
to remove button input animations, a change that would sig-
nificantly reduce the information leakage in the power line,
but provide minimal feedback to users as to whether they have
correctly pressed the intended button. While both features are
available in some customized versions of Android, they are
not widely deployed in currently available devices.

At first glance, one likely solution is not to eliminate the
leakage, but to drown it out via noise. One such option would
be to utilize a moving background such as the readily available
live/dynamic wallpapers on Android/iOS, which act similarly



to videos and constantly animate the screen. While this idea
seems initially attractive, it has a few major drawbacks: 1)
the live wallpaper only works on the lock or home screen and
would not prevent similar attacks against onscreen keyboards
in applications, and 2) the noise generated by this system is
random and can be filtered out with sufficient samples. In a
preliminary study of this defense technique, we built a neural
network trained with 100 samples per button taken with two
live wallpapers and tested on another live wallpaper. The
network was able to realize greater than 98% single button
accuracy, demonstrating that with sufficient samples of live
wallpapers, Charger-Surfing can discern the true user input
signal from the noise signal of the moving background.

To fully address the leakage channel exploited by Charger-
Surfing, one solution is to eliminate the leakage channel by
inserting a low pass filter in the charging circuitry of the
device. This modification will remove the informative high
frequency component from the signal. In a preliminary testing,
we applied a low-pass filter with a cutoff of 60Hz to the col-
lected iPhone 6+ cross-device data and the accuracy dropped
to 10% (expected accuracy of random guessing). This result
demonstrates that this approach can effectively mitigate the
information leakage that Charger-Surfing relies upon.

Until an effective countermeasure is widely adopted, it is
important for users to be increasingly aware of the security
threats associated with USB charging. Users should avoid in-
putting a passcode or other sensitive information while charg-
ing their smartphones in public or shared environments.

8 Related Work

In this section, we briefly survey the research efforts that
inspire our work and highlight the differences between our
work and previous research. We mainly discuss research work
in the following four areas:

Smartphone authentication. Smartphones are commonly
equipped with two popular authentication methods: numeric-
based passcodes or pattern-based passcodes. Both methods,
however, are vulnerable to various types of attacks, includ-
ing shoulder surfing [50], smudges [13], and keyloggers [19].
Previous work has demonstrated that sensory data (e.g, ac-
celerometer, gyroscope, and orientation) can be used to extract
a user’s input on the touchscreen [43, 46, 63]. In addition to
in-device sensors, attackers can also utilize acoustic signals
to infer keystroke information on physical keyboards [17, 73].
Recently, Zhou et al. [72] proposed PatternListener to crack
Android’s pattern lock password through the acoustic signals
gathered by a malicious application accessing the in-device
microphone. Unlike these works, our work does not require
malicious apps to be installed on the target smartphone.

Another type of keystroke inference on smartphone de-
vices leverages video recording [66], where attackers use a
camera to record finger behaviors [49, 62, 67] or the users’
movements [55]. The reflections off of an eyeball, captured
by special equipment, can also be exploited to leak device

passwords [14,15,26]. Our work differs from these in that our
approach does not require attackers to be in close physical
proximity to the victim.

Other authentication methods utilize physiological biomet-
rics (e.g., face [56]) and behavioral biometrics for authentica-
tion, including touch patterns [71], gait [40, 61], hand move-
ments, and grasp features [38,52]. However, these approaches
can suffer from replay attacks and insufficient accuracy and
do not satisfy industry requirements.

Power analysis. Extensive efforts have been devoted to ana-
lyzing the power consumption of smartphones [18,39,47,48].
Carroll et al. [20] presented a detailed analysis showing that
the touchscreen is one of the major consumers of power in a
smartphone. Furthermore, many works [24, 29, 68] attempt to
understand the energy consumed by the touchscreen.

The power consumption of a smartphone could be exploited
as a side channel to extract information such as mobile appli-
cation usage [25] or password length [64]. Yang et al. demon-
strated that public USB charging stations allow attackers to
identify the webpages being loaded when a smartphone is
being charged [65]. Michalevsky et al. [42] demonstrated that
power consumption could be used to infer the location of mo-
bile devices. Spolaor et al. [53] showed that the USB charging
cable can be used to build a covert channel on smartphones
by controlling a CPU-intensive app over 20 minutes. To the
best of our knowledge, we are the first to show that the power
consumption of a smartphone can be used to infer animations
on a touchscreen and steal sensitive data, such as a user’s
passcode.

Other side channel attacks. Chen [23] demonstrated that
the shared procfs in the Linux system could be exploited
to infer an Android device’s activities and launch UI infer-
ence attacks. Without procfs (e.g., iOS devices), attackers can
still infer sensitive information and private data by exploiting
exposed APIs [69]. Genkin et al. [32] acquired secret-key
information from electromagnetic signals by attaching a mag-
netic probe to a smartphone. Radiated RF signals can also
be used to eavesdrop screen contents remotely [41]. Recent
research [33] has also shown the possibility to infer broad
information on large computer monitors via acoustic emana-
tions from the voltage regulator. Similar to traditional comput-
ers, smartphones are also vulnerable to classical cache-based
side-channel attacks [70]. Our work differs from these prior
works by showing much finer grained information leakage of
screen animation locations through the power line.

USB and other power vulnerabilities. As modern smart-
phones rely on USB to charge their batteries, multiple vulner-
abilities have been found in the USB interface [60], including
traffic monitoring [45], crosstalk leakage [54], keylogging
side channels [44], malicious command execution [58], and
trust exploitation [16]. While prior research has tried to fil-
ter malicious USB actions [57, 59], our work demonstrates
that, even without any data transmission over the USB cable,



the power consumed can be exploited to extract fine-grained
information such as user passcodes.

While ethernet over power line techniques have been uti-
lized in both homes and data centers [22], Guri et al. demon-
strated the possibilities of building covert channels over a
power line [35]. Prior research has also shown that power
consumption information can lead to various privacy issues,
including key extraction on cryptographic systems [37] and
laptops [34], state inference of home appliances [30], web-
page identification of computers [27] and laptop user recog-
nition [28]. Unlike these attacks, our work classifies ten on-
screen animations in real time, directly exposing precise user
input over the charging port.

9 Conclusion

This paper reveals a serious security threat, called Charger-
Surfing, which exploits the power leakage of smartphones to
infer the location of animations played on the touchscreen
and steal sensitive information such as a user’s passcode. The
basic mechanism of Charger-Surfing monitors the power trace
of a charging smartphone and extract button presses by lever-
aging signal processing and neural network techniques on
the acquired signals. To assess the security risk of Charger-
Surfing, we conduct a comprehensive evaluation of different
types of smartphones and different users. Our evaluation re-
sults indicate that Charger-Surfing is victim-independent and
achieves high accuracy when inferring a smartphone passcode
(an average of 99.3% and 96.9% success rates when cracking
a 4-digit and 6-digit passcode in five attempts, respectively).
Furthermore, we build and test a portable, low-cost power
trace collection system to launch a Charger-Surfing attack
in practice. We then utilize this system to demonstrate that
Charger-Surfing works well in real settings across different
user configurations and devices. Finally, we present different
countermeasures to thwart Charger-Surfing and discuss their
feasibility.
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Appendices

A Additional Figures and Tables

Table 9: Smartphones Used For Evaluation

Phone (Release Year) OS Processor GPU
Screen

Resolution Technology

Motorola G4 (2016) Android 6.0.1
4 x 1.5 GHz A-53
4 x 1.2 GHz A-53

Adreno 405 1920x1080 LCD

Samsung Galaxy Nexus
(2012)

Android 6.0.1 2 x 1.2 GHz A-9 PowerVR SGX540 1280x720 Super AMOLED

Apple iPhone 6+ (2014) iOS 12.1 2 x 1.4 GHz Typhoon PowerVR GX6450 1920x1080 LCD

Apple iPhone 8+ (2017) iOS 12.1.2
2 x 2.3 GHz Monsoon
4 x 1.4 GHz Mistral

Apple GPU 1920x1080 LCD

Table 10: Classification Network Used for iPhone

iPhone Classification Network
Layer Operation Kernel Size

1 Input 100000x1
2 Convolution 50x50
3 MaxPool 5
4 Convolution 50x50
5 MaxPool 5
6 Convolution 50x50
7 MaxPool 5
8 Convolution 50x50
9 GlobalAveragePool -
10 Dropout 0.5
11 Dense 10

Table 11: Classification Network Used for Android

Android Classification Network
Layer Operation Kernel Size

1 Input 800000x1
2 Convolution 100x100
3 MaxPool 5
4 Convolution 50x75
5 MaxPool 5
6 Convolution 50x75
7 MaxPool 5
8 Convolution 50x75
9 GlobalAveragePool -

10 Dropout 0.5
11 Dense 10
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