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Abstract—As power and cooling cost has become a major
factor in the total cost of ownership (TCO) of large-scale data
centers, it is important to investigate how data centers run their
cooling systems in practice. The data centers of Amazon Web
Services (AWS) have been continuously expanding worldwide,
and their restrictive security policies keep many management
aspects of data centers private. In this paper, we make an
attempt to explore the cooling systems of AWS data centers
without privileged accesses. We first demonstrate PVT (process,
voltage, and temperature) variations in AWS FPGAs (Field
Programmable Gate Arrays) using time-digital converters (TDC).
We further leverage the DRAM temperature side channel and
improve the usage of the TDC to measure the temperature
change accurately. We conduct a measurement on the daily
temperatures of AWS data centers worldwide and find that
temperature changes of some data centers are closely related
to local weathers. Thus, we deduce they adopt free cooling
techniques. This measurement study motivates us to re-think the
vulnerability of data centers to power/thermal attacks.

Index Terms—FPGA, side channel, Data Center, Cooling System.

I. INTRODUCTION

As data centers have expanded their scales with more
powerful servers to meet the increasing service demands,
the amount of heat emitted by those servers also signifi-
cantly increases and requires the cooling system to prevent
overheating[28]. Improving the efficiency of data centers and
using most of energy for computing are important[22][32].
The power and cooling systems have played a major role
in the total cost of ownership (TCO) of large-scale data
centers, which motivates data centers to adopt the power
over-subscription and aggressive cooling strategies for cost
reduction. Nowadays, there are various technical solutions for
data center cooling systems[1][10]. However, although there
are significant improvements, they are still far from the ideal
due to many factors like the non-linearity of air dynamics.
More importantly, warehouse-scale data centers keep their
inside information private for security reasons[5][6][22]. Thus,
it is difficult to comprehensively investigate their cooling
systems.

In this paper, we take advantage of the temperature informa-
tion leakage through side channels to learn the cooling system
inside a data center without privileged accesses. We choose
physical side channels of the FPGA (Field Programmable
Gate Array) to investigate AWS (Amazon Web Services) data

centers. As the cloud FPGA becomes popular, covert/side
channels research on FPGAs has been intensive. However,
when more and more FPGA-based covert/side channels are
identified, some of them are not practical for remote attacks
on current data centers[35]. In addition, most of the existing
works focus on information leakage among different tenants.
Based on previous research, we choose the DRAM and the
time-digital converter (TDC) as tools for the temperature
estimation. They are used to measure the temperatures of data
centers that power the public cloud.

To implement a precise and high-resolution FPGA-based
side channel in order to sense a temperature change, we
introduce the spatial average technique for TDCs. It recovers
power ripple precisely so that the power ripple can be filtered
out, and we can observe the temperature effect on the signal
propagation in the FPGA. We also use this technique to
measure the switching frequency and transient response of
the power system of AWS FPGAs, and we demonstrate the
process variation of AWS FPGAs. Leveraging the FPGA-
based temperature side channel in TDC and DRAM, we
measure the daily temperature changes of AWS data centers
worldwide (in region-level and zone-level) that provide the
FPGA service. We analyze the collected temperature data,
and we observe that temperature changes of some AWS data
centers are highly related to local weathers, which evidences
that these data centers have adopted the free air cooling tech-
nique for cost saving and environmentally friendly purposes.
Moreover, the behaviors of the cooling system and temperature
dynamics caused by computing equipment inside data centers
are studied. Finally, we discuss the threats of power/thermal
attacks and cloud cartography on the WSC (Warehouse-scale
computing) data center.

Note that in this paper, precision, high resolution, and accu-
racy are not equivalent terms. The precision is the consistency
of repeated measurements, and the accuracy represents the
closeness to the true value. High resolution means the uncer-
tainty of a measurement value is small[34]. Each availability
zone in AWS corresponds to a subnet, so the availability zone
and subnet are used interchangeably. An instance in AWS is
a virtual machine configured with designed resources. AWS
is continuously growing, and its security policies may change
over time.

The rest of this paper is organized as follows. Section
Il presents the background and related work. Section III



describes the experiments on TDCs to show PVT variations
of FPGAs. Section IV focuses on investigation of data cen-
ters with temperature side channels. Section V discusses the
limited application of free cooling in practice and security vul-
nerability posed by temperature information leakage. Finally,
Section VI concludes this work.

II. BACKGROUND AND RELATED WORK
A. Data Center Cooling

The design consideration of a data center cooling system
mainly includes effectiveness, cost, and reliability. The critical
part of a cooling system is building loops to collect the heat
and propel it to the outside. CRACs (computer room air
conditioners) are typically used to dissipate the collected heat
to the outside[10]. The CRAC is effective, but its operational
cost is high.

Since a cooling system once costed a large portion of energy
consumption in data centers[26], free cooling is an innovative
design to minimize the power consumption of the cooling
system by taking advantages of the cool air outside. However,
free cooling still requires artificial cooling, and the temperature
management should consider the overall condition of the data
center[21]. Temperature is an important factor in the power
consumption of the cooling system and various computing
equipment[13]. Understanding the temperature pattern can
help us to deduce the conditions of computing equipment.
Even if physical accesses to data centers are limited, FPGA-
based temperature side channels allow us to remotely investi-
gate data centers.

Cool weather is applicable for cooling data centers in many
places on the Earth. The cold nights and winter seasons
provide excess cold air, and so turning on the air conditioning
or chiller under such scenarios is wasteful. But using cool
outside air is not entirely free[1]. Note that water is used
as a heat medium for some advanced designs. First of all,
outside air should be processed to remove dust. Secondly,
cooling fans are required to transfer the air, or pumps are
used to move the water. Finally, when the outside temperature
is high, the chiller operates to cool down the air. In the case of
freezing weather, the cold outside air should be mixed with hot
outlet air to maintain a warm environment for the computing
equipment, and water should be prevented from being frozen.
Since water cannot work as the heat medium in extremely low
temperatures, radiators can be used as coolers. Radiators rely
on coolants that are not frozen below water freezing points to
transfer heat.

Figure 1 shows the elements considered in this study. The
temperature condition of a data center is affected by the local
weather, the cooling system, and the heat from the computing
equipment. FPGAs in the computing equipment leaks the
temperature information to a remote adversary, and the further
information can be deduced based on the leakage.

B. Cloud FPGA

FPGA services have been increasingly provided by data
centers recently. Compared to CPUs and GPUs, FPGAs are
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Fig. 1: A temperature change in the data center can be
observed by FPGA side channels.

reconfigurable hardware that can implements digital logic
with higher performance and lower power consumption for
accelerating certain workloads. We focus on Amazon EC2’s F1
instance as an example. Current public available regions that
support F1 instances are US East (Northern Virginia), US West
(Oregon), Asia(Sydney) and Europe (Ireland, Frankfurt, and
London)[2]. The signal propagation in FPGA is affected by
process variation, voltage, and temperature (PVT). Based on
the effects of voltage and temperature, many side/covert chan-
nels are developed. The research on FPGA-based side/covert
channels has progressed rapidly in the past decade. It ad-
vances from the lab setting to the cloud setting[35]. Ziener
et al.[57] used the power supply pin to communicate with
the FPGA. The time-digital converter (TDC) and the ring
oscillator implemented with look-up tables (LUT-RO) are tools
available to measure the signal propagation in the FPGA.
Zick et al.[56] showed the measurement of transient on FPGA
with TDC. Because the signal of the power supply correlates
with the delay of FPGA, the oscilloscope is not needed. The
LUT-RO can be used to develop side/covert channels through
a power delivery system[15][55], but it requires restrictive
settings and is not generally applicable for the current cloud
setting. Because temperature affects the signal propagation of
FPGA, the LUT-RO can be used as a temperature sensor
to develop covert channels. Takymchuk et al.[25] built a
temperature covert channel between two electrically isolated
parts of FPGA. Tian et al.[44] used stressors to heat up
multiple cloud FPGAs and measure temperatures of FPGAs
to build a covert channel. Generally, the TDC and LUT-RO
are similar and interchangeable in many cases, except the TDC
outputs higher resolution data and requires more memory.

In this paper, we use the AWS FI instance to implement
the temperature sensor for the measurement study. Previous
studies show that temperature information can be used to
estimate power consumption[30], evaluate the vulnerability
of cooling system[14], and receive information in the covert
channel[24].
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C. Co-Residence and Remote Side Channels

Co-residence is essential for launching many malicious
attacks in cloud environments. For example, exploiting co-
residence, an adversary can locate victims with fingerprints
and then build covert channels. Xu et al.[53] studied co-
residence threats inside the AWS data centers and revealed
policies and patterns of VM placement. However, AWS often
change their policies. Now the traceroute command no
longer reports any meaningful information for private IPs
in AWS. Thus, we have to explore the physical side/covert
channels of cloud FPGAs.

Besides the signal propagation of FPGA we discussed be-
fore, DRAM and PCle accessed by the FPGA also can be used
to capture the temperature change, fingerprint, and develop a
cross-FPGA covert channel[16][17][42][45][51]. Furthermore,
all computing equipment in the data center generates heat, and
so the airflow design is critical for the cooling system. Since
Guri et al. [24] used air as the medium to create a covert
channel between two PCs, it is possible that the airflow in the
data center is used for the construction of a covert channel.

D. Power/Thermal Attacks on the Data Center

The threats of power/thermal attacks have been recognized
in the past decade[14][40][54], in which adversaries exploit
over-subscriptions of power supplies and reduced redundancy
of cooling systems to cause power outages or/and heat up
machines to disrupt or degrade the reliability and performance
of data centers. Xu et al.[54] demonstrated that attackers can
force victim servers to reach their power peaks at the same
time and then trip the circuit breaker, causing power outages.
Gao et al.[14] introduced rack-level and data center-level ther-
mal attacks where attackers run thermal-intensive workloads
to rapidly generate a large amount of heat, forcing the victim
servers into a high temperature, which can potentially cause
hardware damage or even server shutdown. Wang et al.[47]
analyzed data center hardware failure reports over four years,
and found that failure rates are higher in some rack positions.
This is because hotspots are unavoidable and difficult to be
cooled down, due to the non-linearity of airflow.

In particular, attackers can exploit side/covert channels
to further assist mounting their power/thermal attacks. Ad-
versaries can place different types of sensors (e.g., cooling
fan sound and some frequency components of the power
distribution unit) in the servers to estimate the power con-
sumption[29][30][31], and leveraging benign workloads in
the background to amplify their attacks. Adversaries can

also utilize covert channels to verify co-residence, which is
helpful to improve the effectiveness of both thermal and power
attacks[14][53].

Warehouse-scale computing (WSC) refers to a data center in
a single organization that owns all equipment. It allows clients
to access resources through cloud computing, but its physical
access is restrictive. Thus, placing sensors in the WSC data
center is not realistic. We focus on the AWS data centers,
which are WSC data centers. AWS has strict rules for physical
access to its data centers[5][6]. However, leaking information
from operation engineers and other sources is possible. For
example, the unreliable source Wikileaks published the in-
ternal information about AWS data centers[11][48]. Because
FPGAs are close to the physical layer, they can be applied for
power/thermal attacks. The power hammer shutting down the
individual FPGA is a type of power attack[33]. For the large
scale, FPGAs are potential tools to capture information leakage
in the physical layer for evaluating the physical condition of
a data center.

III. TIME-DIGITAL CONVERTER

The time-digital converter (TDC) reflects the delay change
in FPGA. The TDC layout is shown in Figure 2. The input
signal does not reach the last output within a clock cycle so
that registers can capture how far the signal propagates. The
components of TDC include look-up tables (LUT), CARRYS,
latches, and flip-flops. It requires manual placement to fix these
components to the designed locations. The input source usually
is a clock signal. It starts from LUTs, which are buffers, then
the signal is passed to CARRY®8s and latches, and then its
propagation distance is stored in flip-flops (registers)[23].

The TDC can capture the voltage changes and transient
responses[19][20][56]. It is useful to test delay changes in
various settings and detect voltage attacks from the power
system. The previous works demonstrate that TDC has high
accuracy for power analysis of the AES algorithm, the BNN
accelerator, and versatile tensor accelerator[18][36][39][43].

The TDC is affected by PVT variations, and we use the
temperature effect to deduce the temperature change. The
process variation and voltage effect in AWS FPGAs are
detailed in Section III-D and Section III-F, respectively. The
temperature effect is demonstrated in Section III-G and Section
Iv.

A. Temporal Average and Spatial Average

The resolution and precision of the value in a single run of
a TDC is not high enough because it is affected by noise from
parasitic elements, process variation, and thermal difference.
The previous research uses a temporal averaging technique
to improve the resolution and precision[18][36] [39][43]. We
introduce the spatial average technique to tackle the noise.
The layout of TDCs is shown in Figure 3. We define temporal
average and spatial average as follows:

o Temporal average is the average of data that are collected
in different time instances.



Fig. 3: An example layout of 20 TDCs (Other FPGA designs
are not shown)

o Spatial average is the average of data that are collected
in different positions in the FPGA.

The temporal average technique is useful to observe the
FPGA internal activities or power consumption of PDN (power
distribution network). Although it improves the precision and
resolution, this technique filters out a power ripple with proba-
bility. It may be related to the theory of probability sampling,
but sampling timing cannot be controlled. Its uncertainty is
difficult to be understood and explained theoretically. We
prefer techniques from the field of signal processing to filter
out the power ripple.

The power ripple and the oscillation from the feedback loop
of the voltage regulator generate noises in certain frequency
components. The spatial average technique detects switching
frequencies from the power delivery system. It has high-
resolution and precise outputs, so that the power ripple can
be recovered and removed with a low pass filter.

B. Amazon EC2 FI Instance Implementation

AWS does not allow users to upload and run their FPGA
images directly. Users have to use AWS FPGA toolkits that
are available in GitHub[4]. AWS provides three types of F1
instances. They are F1 2xlarge, F1 4xlarge and F1 16xlarge.
The FPGA chip is Xilinx Virtex UltraScale+ VU9P[3]. The
CPU of the F1 instance is Intel Xeon ES-2686. We cannot find
further information about the FPGA board in the AWS, voltage
regulators, and power supply. It seems that AWS designs a
custom board for that FPGA chip. Bittware designs the XUP-
P3R board for the VU9P FPGA[9], and we believe the F1
instance uses a similar board.

AWS allows synthesizing the FPGA design with constraint
files (XDC files)[49]. We use up to 20 TDCs and set up the
layout as shown in Figure 3. We make TDCs manually using
Xilinx Vivado[50], and it generates a XDC file so that we can
use it for synthesis with AWS toolkits[4].

We add the TDCs implementation to  the
cl_hello_world example in the AWS toolkit to reuse
the interface. The data from TDCs is stored in the BRAM of
FPGA then transferred to the software. We debug and develop
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Fig. 4: (a) An averaged TDC signal (b) The low-pass filter
output

our design based on the c1_hello_world example. We
adjust an appropriate number of LUTs and CARRYS8s for the
TDC to make the signal propagation passing the last LUT
but not reaching the last bit output of the last CARRYS.
Otherwise, it is not usable. The place and route algorithm
may be run multiple times for an acceptable FPGA image.

It is costly to make all TDCs in our design usable, due to the
inconsistent clock routing and process variation. The details
about the process variation of AWS FPGA are discussed in
Section III-D. Suppose we attempt to make all TDCs usable,
we need to adjust individual TDCs to synthesize multiple times
for an acceptable routing solution, and the solution has to be
dedicated to a physical FPGA. After we stop and restart the F1
instance, the physical FPGA can be changed. If some TDCs
become unusable, the FPGA design has to be re-synthesized.

Making all TDCs usable is unnecessary because we find
15 usable TDCs are sufficient for this work. Thus, we make
sure that at least 15 out of 20 TDCs are usable before starting
the data collection. Each TDC output is stored in a separate
file, and the average of them is computed with a software
program. Because the average of TDC outputs can recover the
switching frequency precisely, the low-pass filter can remove
the noise caused by the switching frequency better. However, if
anomalous data is found, we can check individual TDC output
for reasoning.

C. Noise from Power Delivery System

The large scale FPGA in the cloud connects to the power
supply directly, and these power supplies and the voltage
regulators in the board are likely switch-mode. They generate
and regulate power with the switch. Thus, we detect these
switching frequencies with the spatial average of TDCs. Figure
4 shows the averaged signal of TDCs. It is more precise than
signals from individual TDCs shown in Figure 5.
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D. Process Variation

Process variation is a vital topic in the semiconductor pro-
cess. It is the backbone to implement the physical unclonable
function (PUF) and is also useful for fingerprinting. Because
the AWS FPGA is manufactured with the advanced process, its
process variation greatly influences the signal propagation of
our TDCs. To show the process variation of FPGAs in AWS,
we use the same image for different FPGAs. Figure 6 shows
that individual TDCs in the same binary behave differently for
FPGAs in different slots of the F1 16xlarge instance.

E. Analysis of Resolution and Precision

The number of usable TDCs is N, and there are M bits
of TDC output. N x M is the resolution. The improvement
of resolution per additional usable TDC is M. The smallest
averaged TDC output value difference is % Multiple TDCs
can sense thermal information uniformly, and the impacts
from the process variation, parasitic capacitance, and parasitic
inductance are minimized.
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F. Transient Response

Transient response is an important way to test the power
delivery system. Stressors are used to draw a large current
to trigger step response. It could be any component of the
FPGA as long as it can cause a voltage drop. Previous
works show LUT ring oscillators, flip-flops, and programmable
interconnect points (PIP)[15][19][20] [56] can be used as
stressors. We use chains of LUTs as stressors. The switch of a
number of LUTs in the AWS FPGA leads to the step response,
and the undershoot and overshoot are visible in Figure 7.
Temporal average also can recover them, but the information
of switching frequency is lost in temporal average.

G. Local Experiments for Validity

Since we do not have any physical access to measure the
temperatures inside AWS data centers as the ground truth,
we conduct local experiments for proving the validity of our
approach. We implement a TDC in the NEXYS A7 FPGA
board and measure the temperature effect on the TDC output.
We use the hairdryer to generate hot air and heat up the TDC
for 1 minute. The results are shown in Figures 8a and 8b. The
TDC outputs drop because the high temperature increases the
delay, showing the effectiveness of our approach, which is
applied to the cloud FPGA environment.

IV. TEMPERATURE SIDE CHANNEL

Our precise FPGA side channel implemented with TDCs
enables the collection of temperature information in real-time.
We also compare the temperature measured by our TDC side
channel with the DRAM side channel[51]. The principle of



the DRAM temperature side channel is that when temperature
increases, it accelerates the decays of DRAM cells that hold
Is (The decays of DRAM cells vary due to the manufacture
variation). In other words, we can deduce the temperature
changes by counting the number of bits that flip from 1 to
0 in a fixed duration. We adopt Tian et al.’s[45] approach to
implement the DRAM side channel in the AWS FPGA. We
turn off the ECC and scrubber of DRAM by modifying the
ddr4_core_ddr4 module and cl_dram_dma example.
The c1_hello_world example does not use the DRAM,
so the DRAM stops refreshing when it is used. We use a
modified version of the c1_hello_world example to avoid
refreshing. The first step to implement the DRAM side channel
is writing 1s to the selected DRAM region with the modified
cl_dram_dma example. The second step is replacing the
cl_dram_dma image with the modified c1_hello_world
image so that the selected region will decay. Finally, after a
certain time, we load the modified c1_dram_dma image back
and read the selected region, and we can count the flipped bits
to learn the temperature change.

Collecting temperature data in AWS data centers allows
us to take a glance at temperature changes inside the data
center. Adversaries can also exploit our FPGA side channel
as thermal sensors to obtain temperature information for
WSC data centers, and thus find optimal timings to mount
power/thermal attacks.

A. Global-Scale Free Cooling

The free cooling technology has become the trend and
supports various climates[37]. However, the local temperature
is a physical constraint. In some cities with hot climates, the
initial investment of free cooling can be high and its overall
saving is small.

Moreover, inaccurate weather forecast and unexpected lo-
cal high temperature deteriorate the complexity of work-
load management. In addition to seasonal/daily temperature
changes, extreme weathers also should be considered. As
global warming heats the earth, a data center should make sure
its cooling system can maintain an appropriate temperature.
The extremely low temperature should also be paid attention
to because water is often used as a heat medium in the cooling
system, and some computing equipment cannot run at a low
temperature.

Since free cooling increases the predictability of cooling
system, previous research on power/thermal attack strategies
on a single data center can be extended to multiple data
centers. Adversaries can use the FPGA side channel to verify
that the data center uses free cooling. Then, they can choose
a time when the outside temperature is high to attack.

B. Locations of Data Centers

Table I shows approximate locations of data centers in
regions that support F1 instance based on the information
of baxtel.com[8]. The locations of data centers are important
because electricity price, data center market, weather, natural
disaster, etc., are factors that should be considered to choose

TABLE I: AWS Data Centers Locations[8]

Region Approximate | Availability | Time Offset
Location Zones (Sep. Oct.)
Virginia (US) Ashburn 6 UTC-4
Oregon (US) Umatilla 4 UTC-7
Sydney (Asia) Sydney 3 UTC+10
London (EU) Didcot 3 UTC+1
Frankfurt (EU) Frankfurt 3 UTC+2
Ireland (EU) Dublin 3 UTC+1
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Fig. 9: The data collected with an F1 2xlarge instance in the
subnet a, Northern Virginia region (local time: UTC - 4).

the location for a data center. Although addresses of AWS data
centers can be found, we do not know how each availability
zone corresponds to the data center. There are multiple AWS
buildings in each region, and they are close to each other.

We need the local weather information to learn whether a
data center uses free cooling or not. The local weather infor-
mation of each region is based on its approximate locations
shown in Table I. Furthermore, the locations of availability
zones can be better approximated with latency shown in Table
II. To know the physical location of each availability zone, one
method is to use the FPGA-based temperature side channel as
a receiver and the outside air as the transmitter to construct
a covert channel because free cooling uses the outside air.
Besides the temperature covert channel, the electromagnetic
covert channel is also useful to localize the data center[41].
However, the city-level temperature is sufficient for investigat-
ing the free cooling scenario.

C. DRAM Side Channel versus FPGA Side Channel

Each F1 instance in AWS provides FPGA and DRAM that
the FPGA image can access. We use them to implement
temperature side channels. The DRAM side channel and
TDC side channel are implemented with entirely different
mechanisms. After the DRAM refresh is turned off, the time
of memory retention for each bit depends on temperature.
We write 1s to selected bits in DRAM, and then we read
the selected bits after a certain amount of time to count the
number of flipped bits[45][51]. If the temperature increases,
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Fig. 11: The data collected with an F1 2xlarge instance in the
subnet a, Sydney region (local time: UTC + 10).

the number of flipped bits increases. Thus, we can deduce
the temperature change. The TDC is implemented to measure
the delay of signal propagation. It is well-known that the
temperature affects the signal propagation in the digital chip.
We observe that when the number of flipped bits increases,
the TDC output decreases. Their temperature patterns are
mostly consistent, as illustrated in Figures 9-21. AWS FPGA
does not have the temperature inversion phenomenon. This
phenomenon happens if the supply voltage in the digital chip
is reduced[38][58]. The FPGA chip and DRAM are placed
closely to each other, and it is worth noting that a large FPGA
is equipped with a cooling fan. Its cooling functionality is
slightly better than DRAM.

Accuracy Analysis. When the temperature increases, the
signal delay in the FPGA increases close to linear, and
according to Xiong et al.[51], the number of flipped bits
in the DRAM increases superlinearly. Both the TDC side
channel and DRAM side channel are non-linear functions on
temperature. Because the temperature range is small (about 10
degrees), they can be considered approximately linear. We col-
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Fig. 12: The data collected with an F1 2xlarge instance in the
subnet a, Ireland region (local time: UTC + 1).
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Fig. 13: The data collected with an F1 2xlarge instance in the
subnet a, London region (local time: UTC + 1).

lect temperature data with both side channels simultaneously
for double-checking.

Data Collection. To automate the data collection process,
we write a script in Bash. It runs TDCs iteratively, and the
DRAM side channel is run once in every ten iterations. The
TDC data is stored in RAMs temporarily, and then the data is
read with the interface and stored in a file. The spatial average
of TDC values is also computed and stored. For the DRAM
side channel, the script waits 20 seconds for the decay of
selected bits. Then the number of flipped bits is counted and
stored. We use the date command to record the data collec-
tion time in UTC (coordinated universal time) format. For the
analysis of data, the average TDC values are concatenated, and
then the high-frequency noise is removed with a low-pass filter
for the data plot. The TDC values, numbers of DRAM flipped
bits, and local temperatures are aligned and plotted based on
the UTC from the date command. To show the local weather
intuitively, we use the local time in Figures 9-21.
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Fig. 14: The data collected with an F1 2xlarge instance in the
subnet b, Frankfurt region (local time: UTC + 2).

D. Temperatures of Regions

In our AWS account, there are 21 regions to choose from.
However, only Northern Virginia, Oregon, Ireland, Sydney,
Frankfurt, and London regions support F1 instances. We
believe the cooling systems of data centers in these regions
are applicable for the rest of the regions. To analyze how local
weather affects the temperature of a data center, we use the
weather data in the website timeanddate.com[46]. It provides
hour-by-hour past and forecast weather data in all cities around
the world. Using the localization methods discussed in Section
IV-B, we obtain the approximate local weather for data centers
in each region. We launch an F1 2xlarge instance in the
subnet a of every region that supports the F1 instance for
measurement except the Frankfurt region. Only subnet b in
the Frankfurt region supports F1 instances, and so we have
to launch F1 instances in subnet b. The measurement in all
regions starts approximately at 5am on October 14th, 2021
(UTC). The results from different regions are shown in Figures
9-14.

For F1 instances in Northern Virginia, Oregon, Ireland, and
Sydney regions, the patterns of their DRAM side channel and
TDC output shown in Figures 9-12 are consistent. Generally,
their temperature patterns match the temperature changes of
local weathers, and so we believe data centers in these regions
adopt free cooling techniques. When the computing equipment
heats up the data center, or/and the outdoor temperature in the
daytime is hot, the cooling system cools down the computing
equipment. The temperature drop caused by the cooling system
is demonstrated in Figure 9. The temperature side channel in
the Northern Virginia region shows a sudden temperature drop
at about local time 3pm on October 15th, 2021. We can see
similar phenomena in the Sydney and Ireland regions (Figures
11-12).

The timing that the cooling system acts is interesting. In
Figure 12, we can observe a sudden temperature drop at 11am
on October 15th, whereas there is no drop on October 14th. It
is noticeable that the drop starts when the outside temperature

is 11 °C. Similarly, for Figure 11, the temperature drops at
about 11am on October 15th, when the outside temperature is
19 °C. We can see that the outside temperature is not the only
factor for the operation of the cooling system, and there are
probably temperature sensors in different locations inside the
data center to measure the temperature of computing equip-
ment more closely. Thus, the high-temperature spot inside the
data center can trigger the cooling system to cool it down. The
F1 instance in the Sydney region (Figure 11) shows that its
temperature is constant during the nighttime on October 15th.
We believe that the data center has a mechanism to maintain
the constant temperature for the FPGA card for some duration.

For London region and Frankfurt region, temperatures of
F1 instances are shown in Figures 13-14. The patterns of the
DRAM side channel and TDC output demonstrate that the
temperature changes are minimal. They are independent of the
local temperatures, indicating that the data centers of these two
regions do not use free cooling during our measurement.

Northern Virginia, Oregon, Ireland, and Sydney are in dif-
ferent time zones, and their local temperatures peak at different
times. The computational tasks that require high computation
power and less latency constraint should avoid the peak local
temperature or be run in a different data center where the cool
outside air and computing resources are available. However,
current regions that support F1 instances are insufficient to
allow sophisticated global resource allocation. It needs not
only the weather forecast but also workload coordination
among data centers. Xu et al.[52] formulated this problem and
developed an algorithm to address it. AWS or other public
clouds do not have much flexibility to distribute workloads,
since cloud users usually request a service in a specific area.
However, the price can be leveraged by cloud service providers
to motivate users to use cloud resources with lower costs.

E. Temperatures of Availability Zones in Northen Virginia

TABLE II: Minimum Latencies among Availability Zones in
Northern Virginia Region (Unit:ms)

sro dst a b c d e

Subnet a 0.237 | 0.567 | 0.656 | 1.278 | 0.341
Subnet b 0.570 | 0.072 | 0.413 | 0.433 | 0.630
Subnet ¢ 0.570 | 0.072 | 0.413 | 0.433 | 0.630
Subnet d 1.272 | 0438 | 0.346 | 0.139 | 0.656
Subnet e 0.348 | 0.620 | 0.613 | 0.659 | 0.109

There is a large data center market in Northern Virginia, and
it continues boosting. AWS has invested many resources in this
market, and so we study AWS data centers in the Northern
Virginia region. AWS makes multiple availability zones in
each region, and each availability zone guarantees that it has
independent power and networking infrastructures[7]. More
flexible choice of availability zone provides better latency
service for cloud users. Power outages of data centers are not
uncommon, and it happens every year[27]. Having multiple
data centers can avoid the single point of failure from the
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Fig. 15: The data collection with an F1 2xlarge instance in
the subnet a, Northern Virginia region starts at 12pm on

September 18th, 2021.
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Fig. 16: The data collection with an F1 2xlarge instance in the
subnet b, Northern Virginia region.

viewpoint of security engineering. We can find the locations
of AWS data centers in baxtel.com[8], but we do not know the
physical location of each availability zone. We use latency to
estimate the physical distances among data centers. Moreover,
latency is a metric to estimate the distances among physical
machines[53]. Minimum latency among subnets shown in
Table II are measured with the Linux command ping. From
Table II, we can approximately know their relative distances
among availability zones.

We measure the temperature of all subnets in the Northern
Virginia region except subnet f because it does not support
F1 instance so far. The measurement starts at around 4pm
on September 18th, 2021 (UTC) or local Virginia time 12pm
on September 18th. The local temperature is based on the
weather in Ashburn, VA. Based on our data (Figures 15-19,
we can verify that temperatures for F1 instances in different
availability zones simultaneously synchronize well with the
local temperature changes, except that at some occasions
the temperatures rise due to high workloads. Therefore, we
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Fig. 17: The data collected with an F1 2xlarge instance in the
subnet ¢, Northern Virginia region.
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Fig. 18: The data collected with an F1 2xlarge instance in the
subnet d, Northern Virginia region.

believe that these availability zones supporting F1 instances
in Northern Virginia region adopt free cooling.

Since the data of Figures 15-19 are collected from dif-
ferent data centers, their operations of the cooling system
and the heats from computing equipment are independent.
From Figures 16-17, subnets b and ¢ show high temperature
periods during nighttime. It is due to the heat generated by
their computing equipment, but we cannot determine if they
could apply to the overall utilization of a data center. Each
rise and drop of temperature lasts about 30 minutes. Since
the efficiency of the data center is important, the data center
always tries to improve its utilization and minimize idle time.
Moreover, Figures 16-17 also demonstrate that the FPGA
instance can be heated up higher than the peak temperature
of the day. Figure 15 shows a 30-minute duration temperature
drop at about 2:20 pm on September 19th even when the local
temperature peaks. It shows that at some scenarios when too
much heat generated by computing equipment, the cooling
system has to work without using free air for quickly lowering
the temperature. By contrast, Figures 16 - 19 do not show a
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subnet e, Northern Virginia region.
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Fig. 20: The data collected with the additional F1 2xlarge
instance 2 in the subnet a, Northern Virginia region.

sharp temperature drop at that time even the local temperature
reaches peak (28 °C).

FE. Temperatures in the Availability Zone A

To observe what types of information are useful for mount-
ing data center level attacks, we collect data from 4 more
instances in the subnet a of the Northern Virginia region. This
measurement starts at local time 1:45am on September 19th,
2021. The F1 instance in Figure 15 is the instance 1, and the
instance 2 and instance 4 at subnet a are shown in Figures
20 and 21, respectively. The temperature patterns of instance
3 and instance 5 are similar to these two instances, and thus
their data are omitted.

Although AWS experienced a number of outages and prob-
lems, it claimed that outages never caused a loss of the entire
data center[12]. AWS also revealed information about the
relationship between the data center and the availability zone.
It stated that “In every zone, you have at least one data center.”
In other words, it did not confirm two instances in the same
availability zone are in the same data center, and it seems that
AWS does a great job of isolating the fault effects.
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Fig. 21: The data collected with the additional F1 2xlarge
instance 4 in the subnet a, Northern Virginia region.

However, from Figures 20 and 21, the overall temperature
patterns of the two instances are similar. The effects of the
local weather and cooling are identical, implying the physical
locations of the two instances are possibly close to each other.
Both temperatures dropped at about 2:40pm. Figure 15 also
captures the temperature drop in the subnet a at that time.
The subtle differences among them are noticeable. We can
observe that temperature peaks at about 11:00am in Figure
20, which is comparable to the temperature when the local
temperature peaks. Tian et al.[42] showed the probability that
FPGAs share the same NUMA node is decent. Based on their
similar temperature patterns, we speculate that these four F1
instances are in the same data center.

V. DISCUSSION

In Section IV-E, we show all subnets a-e adopt free cooling.
However, the climate in Northern Virginia does not always
provide cool air. Since our measurements were conducted in
the fall, these subnets simultaneously use the outside air of
the same area for the cooling purposes. However, the usage of
free cooling is highly dependent upon the physical location of
a data center and its local weather. If the local weather is hot,
all data centers in these subnets should avoid the usage of free
cooling. Therefore, it is worth to pay attention to the physical
location and current weather of data centers for studying their
cooling systems and daily operations.

Since we do not have physical access to AWS data centers,
we cannot know the exact physical locations of FPGAs and
their relative relations with other computing equipment. How-
ever, from the perspective of an adversary, the information
sources do not have to be reliable and accurate. In Section
IV-F, we show similar temperature patterns of four FI in-
stances in subnet a, and they are likely in the same data center.
The adversary can estimate the physical locations of FPGAs
by observing their temperature pattern to launch more effective
power/thermal attacks.



VI. CONCLUSION

In this paper, we conduct a measurement study on the
cooling systems of AWS data centers through FPGA-based
temperature side channels. We leverage TDCs to observe the
process variation, step response, and temperature effect of
AWS FPGAs. We also implement the DRAM temperature side
channel. We use the DRAM side channel and TDCs to collect
the temperature information leakage. We select 10 availability
zones (10 or more AWS data centers) for the measurement
study. Based on the collected data, we analyze the cooling
system of AWS data centers and identify many of them adopt
free cooling for the reduction of cooling cost. Our study
not only reveals the temperature information leakage in data
centers but also investigates the data center cooling system
from security and privacy perspectives.
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