
Time-Print: Authenticating USB Flash Drives with

Novel Timing Fingerprints

Patrick Cronin

University of Delaware

ptrick@udel.edu

Xing Gao

University of Delaware

xgao@udel.edu

Haining Wang

Virginia Tech

hnw@vt.edu

Chase Cotton

University of Delaware

ccotton@udel.edu

Abstract—Universal Serial Bus (USB) ports are a ubiquitous
feature in computer systems and offer a cheap and efficient
way to provide power and data connectivity between a host
and peripheral devices. Even with the rise of cloud and off-site
computing, USB has played a major role in enabling data transfer
between devices. Its usage is especially prevalent in high-security
environments where systems are ‘air-gapped’ and not connected
to the Internet. However, recent research has demonstrated that
USB is not nearly as secure as once thought, with different
attacks showing that modified firmware on USB mass storage
devices can compromise a host system. While many defenses have
been proposed, they require user interaction, advanced hardware
support (incompatible with legacy devices), or utilize device
identifiers that can be subverted by an attacker. In this paper, we
present Time-Print, a novel timing-based fingerprinting method,
for identifying USB mass storage devices. We create a fingerprint
by timing a series of read operations from different locations on
a drive, as the timing variations are unique enough to identify
individual USB devices. Time-Print is low overhead, completely
software-based, and does not require any extra or specialized
hardware. To validate the efficacy of Time-Print, we examine
more than 40 USB flash drives and conduct experiments in
multiple authentication scenarios. The experimental results show
that Time-Print can (1) identify known/unknown brand/model
USB devices with greater than 99.5% accuracy, (2) identify
seen/unseen devices of the same brand/model with 95% accuracy,
and (3) classify USB devices from the same brand/model with an
average accuracy of 98.7%.

I. INTRODUCTION

The Universal Serial Bus (USB) has been a ubiquitous

and advanced peripheral connection standard for the past two

decades. USB has standardized the expansion of computer

functions by providing a means for connecting phones, cameras,

projectors, and many more devices. Recent advancements

in USB have increased data transfer speeds above 10 Gbps,

making the USB mass storage device (flash drive) a popular

method for moving data between systems. Especially, USB

is commonly used in air-gapped systems where security

policies prohibit data transfer via the Internet, such as military,

government, and financial computing systems [13], [42], [44].

While USB has made the usage and development of

various peripheral devices far simpler, it has recently been

scrutinized for security issues [5], [2], [23], [30]. USB is

an inherently trusting protocol, immediately beginning to set

up and communicate with a peripheral device as soon as it

is connected. This has many advantages, as users are not

required to undertake a difficult setup process, but has recently

been exploited by attackers to compromise host systems.

The discovery of Stuxnet [2], Flame, and Gauss [36] has

demonstrated that malware can be designed to spread via USB

stick. Unwitting and curious employees might pick up dropped

(infected) flash drives and plug them into their computers,

allowing the malicious code on the drives to infect the hosts

and then propagate across the network, wreaking havoc on the

targeted industrial control systems. More recently, attackers

have investigated the ability to modify the firmware of a USB

device [23], [30] such that an outwardly appearing generic

USB flash drive can act as an attacker-controlled, automated,

mouse and keyboard. The behavior of the USB driver can also

be utilized as a side-channel to fingerprint a host device and

launch tailored drive-by attacks [5], [18]. While many defense

mechanisms have been proposed, these techniques generally

require user input [58], new advanced hardware capabilities [7],

[55], or utilize features (device product ID, vendor ID, or serial

number) that could be forged by an advanced attacker with

modified firmware [1], [30].

In this paper, we propose a new device authentication method

for accurately identifying USB mass storage devices. We reveal

that read operations on a USB mass storage device contain

enough timing variability to produce a unique fingerprint.

To generate a USB mass storage device’s fingerprint, we

issue a series of read operations to the device, precisely

record the device’s response latency, and then convert this

raw timing information to a statistical fingerprint. Based on

this design rationale, we develop Time-Print, a software-based

device authentication system. In Time-Print, we devise a

process for transforming the raw timing data to a statistical

fingerprint for each device. Given device fingerprints, Time-

Print then leverages one-class classification via K-Means

clustering and multi-class classification via neural networks

for device identification. To the best of our knowledge, this is

the first work to expose a timing variation within USB mass

storage devices, which can be observed completely in software

and be utilized to generate a unique fingerprint1.

To validate the efficacy of Time-Print, we first provide

evidence that statistical timing variations exist on a broad

range of USB flash drives. Specifically, we gather fingerprints

from more than 40 USB flash drives. Then we examine

three common security scenarios assuming that attackers have

different knowledge levels about the targeted victim from

1USB Type-C has provisions to identify device models [62] via a specialized
key system; Time-Print does not make use of any specialized hardware and
works on both legacy and new devices.

least to most: (1) identifying known/unknown devices with

different models, (2) identifying seen/unseen devices within

the same model, and (3) classifying individual devices within

the same model. We demonstrate compelling accuracy for

each case, greater than 99.5% identification accuracy between

known/unknown devices with different brands and models,

95% identification accuracy between seen and unseen drives of

the same model, and 98.7% accuracy in classifying individual

devices of the same model.

We finally examine the robustness of Time-Print in multiple

hardware configurations. We observe that Time-Print experi-

ences a small accuracy degradation when measured on different

USB ports, hubs, and host systems. We also examine the

stability of Time-Print and present a strategy to make the fin-

gerprints robust to write operations. Additionally, we investigate

the authentication latency of Time-Print, demonstrating that

while precise authentication can be achieved in 6-11 seconds,

an accuracy greater than 94% can be achieved in about one

second.

The major contributions of this work include:

• The first work to demonstrate the existence of a timing

channel within USB mass storage devices, which can be

utilized for device fingerprinting.

• The design and development of a completely software-

based fingerprinting system, Time-Print, for authenticating

USB mass storage devices without requiring additional

hardware or burdensome user interaction.

• A thorough evaluation of more than 40 USB mass storage

devices, showing that the ability to fingerprint with high

accuracy is not dependent upon the device brand, protocol,

or flash controller.

The remainder of this paper is organized as follows. Sec-

tion II describes the threat model, including an attacker’s

capabilities, and provides a primer on the USB protocol,

USB mass storage devices, and USB security threats/defenses.

Section III demonstrates the existence of a fingerprintable

timing channel within USB mass storage devices. Section IV

details the method for generating and gathering a USB mass

storage fingerprint. Section V presents the experimental setup

for evaluation. Section VI evaluates the Time-Print system.

Section VII examines the practicality of Time-Print under

different use configurations. Section VIII surveys related work

in USB security, device fingerprints, and device authentication.

Finally, Section IX concludes the paper.

II. THREAT MODEL AND BACKGROUND

This section presents the threat model and introduces various

components of the new timing-based side-channel, including

the USB protocol stack, USB mass storage devices, and current

USB security.

A. Threat Model and Attacker Capabilities

The objective of this work is to highlight the applicability

of a security primitive that can physically and reliably identify

USB mass storage devices through a new timing-based side-

channel. We consider a series of realistic scenarios, in which

an entity attempts to either prevent its computing assets from

engaging with unauthorized USB flash drives or better track

the usage of flash drives inside an organization. The desired

security level of a computing system inside the organization

varies from the least (e.g., an open environment) to the highest

(e.g., an ‘air-gap’ protection).

Under the lowest security level, we assume that attackers

also have the least knowledge/privilege to launch an attack. For

example, a computer at a reception desk or an open laboratory

may have access to some assets on the organization’s network

and is in a high traffic area, where an attacker may be able

to physically plug a malicious device into the temporarily

unattended machine. However, compared to computing systems

at the higher security level, it is less challenging (and with less

motivation) to protect such computers at the lower security

level. Moreover, the defense methodologies developed for a

high-security system can be applied for the protection of a

low-security system.

Therefore, the main focus of our work is on air-gapped

systems that have the highest security level, such as computer

systems in military, government, or financial organizations,

which are frequently air-gapped and isolated from the Internet.

Industrial control systems or life-critical systems (e.g., medical

equipment) might also be air-gapped [42], [44]. While the

air-gap is effective at thwarting the vast majority of outside

attacks, it is very difficult to transfer data to and from an

air-gapped system. To this end, USB mass storage devices

offer an excellent, low-cost solution, but are not without their

drawbacks. Attacks such as Stuxnet [2] were injected into

target systems via USB, and recent research has demonstrated

the creation of malicious USB devices which can negatively

affect system security [5], [23], [30].

We then assume that attackers attempt to compromise the

target air-gapped computer via USB drives. Attackers have

the ability to design malicious USB devices so that once the

USB handshake is completed, malicious scripts or activities

can be executed on the host. According to the organization’s

security policies, system administrators only issue access to

a few approved USB devices (i.e., insider devices) belonging

to particular brands and models (e.g., SanDisk Cruzer Blade).

Thus, a USB fingerprinting mechanism must be integrated

into the host to accept/classify approved USB devices and

reject other devices. For a specific air-gapped computer system,

system administrators can train fingerprints for all approved

devices. Also, they can pre-collect multiple devices from

popular brands or models to augment the device authentication

system with examples of unapproved drives.

With these settings in mind, we envision three typical

scenarios as shown in Figure 1, in which Time-Print offers

enhanced security benefits for device authentication. Note that

Time-Print is designed to augment current USB security, and

it can greatly assist existing USB security mechanisms such

as GoodUSB [58] and USBFilter [59].

Scenario ❶: Attackers have no knowledge of the approved

USB devices, and thus a random USB device could be

connected to the target host. Such a random USB device likely

does not belong to one of the approved device models. Time-

Print should thus reject any device whose model is not approved.

In this minimal knowledge scenario, administrators can also

prevent system infection from irresponsible employees that

plug in non-approved devices (dropped devices) or computers

in an open environment (reception computers).

Scenario ❷: Attackers (e.g., former employees who are

aware of the security measure) know the brand and model of

the approved USB devices and purchase one with the same

brand and model. Time-Print should be able to reject unseen

devices of the same brand/model.

Scenario ❸: Auditing user authentication. A system admin-

istrator should have the ability to identify specific devices that

were issued to employees. For approved devices, different

authorization levels might be assigned. In this case, the

system administrator needs to audit which specific devices are

connected to the target system to trace employee activities and

detect data exfiltration attacks. Therefore, Time-Print should

be able to classify all approved devices with high confidence.

Attacker Capabilities. We examine Time-Print against

attackers at multiple levels. A weak attacker may simply

attempt to plug a device into the victim system with little

knowledge (e.g., Scenario 1). A stronger attacker may know

the device model allowed at the victim side and attempt to

connect a device of the same model (e.g., Scenario 2/3). The

strongest attacker may be able to steal a legitimate device and

attempt to replicate the physical fingerprint with an FPGA based

system. While the FPGA based system may attempt to emulate

legitimate firmware, the firmware for current USB flash drives

is a closely guarded and proprietary secret. We do not consider

a case in which an attacker is able to significantly modify the

firmware of a (stolen) legitimate device. In addition, we also

must exclude authorized users who attempt to maliciously

harm their own computing systems. This is a reasonable

assumption as authorized users who have privileges to access

any system resources likely have little need for mounting such

a complicated USB attack.

Defender Preparations. To use Time-Print, defenders (e.g.,

system administrators) should first have a security policy for

limiting the employee usage of USB devices to specific models.

Then, they need to gather fingerprint samples for their legitimate

devices to enroll them into Time-Print beforehand.

B. USB 2.0 Versus 3.0

The USB standard consists of software and driver specifi-

cations that control the communication between two devices

and has undergone several revisions. One major revision of

the protocol, USB 2.0 [17], enables high data speeds (e.g., the

High-Speed specification of 480 Mbit/s), and adds support for

diverse peripheral devices including cameras, network adapters,

Bluetooth, etc. The later introduced USB 3.0 [25] standard

offers an increased 5 Gbit/s data rate and additional support

for new types of devices. Also, USB 3.0 devices are backward

compatible with USB 2.0 ports, but at 2.0’s speed. USB 3.1 [26]

further increases the data transfer rate to 10 Gbit/s with a

modified power specification that increases the maximum power

AIR
-G

APPED COMPUTER

Unauthorized Devices

 (Brand X)

Unauthorized Devices

 (Other Brands)

Insider Devices

 (Brand X)

❶

❸

❷

Difficulty

Fig. 1: Three security scenarios of USB fingerprinting for

device authentication.

delivery to 100W [3]. In this paper, we focus on USB devices

with standards 2.0, 3.0, and 3.1.

C. USB Mass Storage Devices and Flash Storage Controllers

USB mass storage devices are a form of removable storage

media which allow a user to transfer files between a host and

the device. As a recognized device class [21], mass storage

devices follow a well-defined process when connected to a host.

The host queries the device to discover its class code. Upon

determining that it is a mass storage device, the host launches

an instance (on Linux host systems) of the usb-storage

driver. The driver scans the device, determining its file system,

and launches the appropriate file system drivers.

To enable the communication between a device and the host,

each USB mass storage device contains a microprocessor(s)

that handles communications and manages the flash storage of

the device. Flash storage is generally made up of many blocks.

As flash has a limited write endurance and is usually designed

in such a way that individual bits cannot be selectively cleared,

the flash controller typically conducts a series of operations to

modify the stored data in the flash medium. It first locates a new

unused block and copies the data from the old block to the new

block while incorporating any data changes. The flash controller

then marks the old block as dirty, and eventually reclaims

these dirty blocks as part of the garbage collection process.

The controller (as the ‘flash translation layer’) maintains the

mapping information between logical addresses (addresses used

by the host system to access files) and the physical addresses

of the actual pages, and the frequent remapping of blocks is an

invisible process to the host system. Thus, the time required

for the USB mass storage device to access large chunks of

data is potentially unique and suitable to fingerprint the device.

D. USB Security

With its rapid adoption, USB has also become a popular

target for attackers. Previous studies have shown that users

are likely to plug in devices that they find on the ground [29],

[53], [61], especially those modified to look ‘official’ (e.g.,

contain a government logo) [51]. Meanwhile, researchers have

also proposed numerous defenses, ranging from firewall and

permissions systems [4], [58], [59] to device fingerprinting [27].

Many of these systems rely upon the reported device descriptors

(e.g. product/vendor ID, serial number) [1], [8] which can be

modified by a skilled attacker [23], [30]. Magneto [27] attempts

to identify USB devices via electromagnetic fingerprinting

of the microcontroller within the USB mass storage device,

which is hard for attackers to manipulate. However, the

system required expensive, bulky, and highly sensitive spectrum

analyzers and EM probes to identify devices. Instead, in this

work, we uncover a new timing channel within USB mass

storage devices and require no extra equipment to uniquely

identify devices.

III. TIMING SIDE-CHANNEL EXPLORATION

USB mass storage devices are sophisticated systems that

contain at least one microprocessor (i.e., flash storage con-

troller), some form of embedded firmware, and one or more

flash memory devices. The microprocessor(s) is utilized to

maintain the flash translation layer and the flash endurance

(via wear leveling) and to communicate with a host computer.

Whenever the USB mass storage device connects to the host,

a series of transactions provide the host with information

about its size, capabilities, name, partition table, etc. For

those transactions, individual physical devices may demonstrate

small variations (e.g., timing variations) within a tolerance

boundary that does not affect normal operations. One common

method for observing these variations is through unintentional

electromagnetic emissions [14], [15], [16], [18], [27].

While prior works have demonstrated that the USB device

enumeration process can be used to identify individual host

computers / OSes [5], [18], [37], we attempt to explore a timing

channel to accurately identify USB devices. In particular, this

work searches for observable timing differences between the

interactions of a mass storage device and its host. If the flash

controller of one device can respond faster or slower than that

of a different device, it is possible that this variation can be

used to identify a device. Furthermore, if a large chunk of data

is requested from the device, the flash translation layer may

access multiple locations to return all of the data at once. The

time taken for this action (e.g., consult translation table, access

one or multiple flash blocks within the device, coalesce data,

respond to host) may also create observable timing differences.

A. Motivation of Time-Print

Previous works [5], [18], [37] have demonstrated that the

USB handshake and enumeration process can leak information

about the host, including the host’s operating system (different

command sequence) or the host itself (timing differences

between packets). We first attempt to check whether such a

handshake and enumeration process can also generate a stable

fingerprint for USB devices.

Within the Linux operating system, this handshake entails the

loading of a series of drivers, each providing more specialized

functionality to the USB device. Once the device is initially

connected to the host system, the USB core driver accesses the

device and requests its descriptors. The device responds with

its descriptors and identifies its class (e.g., human interface

device, mass storage, etc.) A device object is created, and the

specific class driver is then instantiated. In the case of a USB

mass storage device, the USB storage driver is initiated, and the

USB storage driver probes the device via its communication

interface, the Small Computer System Interface (SCSI). The

host utilizes SCSI commands to probe the filesystem, the

appropriate filesystem driver is then loaded depending on

format (e.g. FAT, exFAT, NTFS, ext4, etc.), and the drive

is finally mounted and enumerated. With the drive handshake

completed, the drive remains idle until the user opens the drive

to access it.

We utilize the usbmon [67] driver within Linux and the

Wireshark [56] program to capture and analyze the raw

packet transmissions during the device enumeration and mount

process. We find that the behaviors of packet transmissions

between similar devices do not vary significantly enough to

create a unique profile. In addition, the file contents of the same

device greatly influence the behaviors of the device enumeration

process, such as addresses, sizes, and the number of packets.

Therefore, the device enumeration process cannot be leveraged

to generate a reliable fingerprint.

B. Creation of a Reliable Fingerprint

To remedy this issue, we seek a new approach for creating a

reliable fingerprint. While the timing of USB setup packets does

not seem to provide fingerprintable information, the interfacing

with the flash controller can. Each time the host system requests

data from a USB device, the flash controller must access the

flash translation layer, determining and accessing the location of

the block (or blocks if the files are fragmented across multiple

physical locations). It then coalesces those areas into USB

packets and sends them to the host. Our intuition is that this

access time varies based upon the locations of the blocks on

a device as well as the size of a read. To examine whether

this assumption is valid, we issue a known series of read

requests of different sizes and locations via SCSI commands

on the device. By recording the timestamp for each read

action, we attempt to construct a statistical fingerprint for the

timing characteristics of each device. We utilize the sg_read

utility [19] to achieve low-level control of the read commands.

Each read sets the Direct IO (DIO), Disable Page Out (DPO),

and Force Unit Access (FUA) flags of the sg_read utility to

‘1’. This combination of flags forces the system to access the

USB drive with each read and disallows the operating system

from utilizing cached read data. Especially, the DPO flag forces

the USB device to fetch the read from the physical media and

keeps the flash controller from responding with cached reads.

This flag combination is necessary to ensure that each read

physically probes the specified flash blocks (allowing for true

timing values to be gathered), instead of simply reading cached

data.

C. Preliminary Classification

To investigate whether a timing fingerprint might be possible,

we conduct preliminary experiments by gathering timing

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4
Fr

eq
ue

nc
y

SanDisk Blade #0

20 40 60 80 100

SanDisk Blade #1

20 40 60 80 100

SanDisk Blade #2

20 40 60 80 100

SanDisk Blade #3

20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

Generic #0

20 40 60 80 100

Generic #1

20 40 60 80 100

Generic #2

20 40 60 80 100

Generic #3

20 40 60 80 100
0.0

0.2

0.4

Fr
eq

ue
nc

y

SanDisk Ultra #0

20 40 60 80 100

SanDisk Ultra #1

20 40 60 80 100

SanDisk Ultra #2

20 40 60 80 100

SanDisk Ultra #3

20 40 60 80 100
Histogram Bin

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y

Samsung Bar Plus #0

20 40 60 80 100
Histogram Bin

Samsung Bar Plus #1

20 40 60 80 100
Histogram Bin

Samsung Bar Plus #2

20 40 60 80 100
Histogram Bin

Samsung Bar Plus #3

Fig. 2: Histograms of read timings for 16 different USB mass storage drives. Each plot contains 20 different samples.

SCSI

Commands

Host USB Device

Physical BlocksTime-Print

 Fingerprints

Timing

Acquisition

Preprocessing

Identification

Extra Read

Fig. 3: The design of Time-Print.

readings from 16 different devices: 4 devices for each of

4 different models (i.e., a generic device found on Amazon,

SanDisk Cruzer Blade, SanDisk Ultra, and Samsung Bar Plus).

A histogram of these readings is presented in Figure 2. Each

graph contains the histograms of 20 separate readings. The high

overlap between readings implies that the timing measurement

is stable from reading to reading, and thus may be a good

candidate for fingerprinting. Visual inspection demonstrates

that different brand/model devices exhibit different timing

characteristics, indicating that read timings will enable us to

differentiate devices with different models. Further inspection

of the variations among devices of the same model shows that

some clear differences still exist. For example, SanDisk Blade

1 and SanDisk Blade 3 in the first row demonstrate differently

shaped distributions. Thus, the preliminary results motivate us

to develop a timing-based device authentication mechanism.

IV. TIME-PRINT DESIGN

In this section, we detail the design and implementation

of Time-Print and describe how Time-Print generates device

fingerprints. In general, Time-Print extends the USB driver to

generate a number of extra reads on randomly chosen blocks

on USB devices via the SCSI commands (as shown in Figure 3)

and then measures the timing information of these read opera-

tions. The process of Time-Print consists of four steps, namely,

(1) performing precise timing measurements, (2) exercising the

USB flash drive to generate a timing profile, (3) preprocessing

the timing profile, and (4) conducting classification based on

the timing profile for device acceptance/rejection.

A. Performing Precise Timing Measurements

As shown in Figure 3, Time-Print enables the fingerprinting

technique within the driver using SCSI commands. Such a

design allows the fingerprint data to be acquired before the

device is fully connected to the host system (thus allowing for

rejection if the device is deemed unrecognized). Also, the driver

has visibility into every packet exchanged between the device

and the host with minimal delay, which reduces the overhead

and latency for the authentication process while simultaneously

increasing the precision of the timing measurements.

The USB mass storage driver and the USB SCSI command

sequence maintain a complex series of objects within the Linux

operating system to control the command and data transactions

communicated between the host and peripherals. Every data

Command

Data

Transfer Status

Host Peripheral

Time

Timing

Information

Fig. 4: A USB SCSI command sequence.

read consists of three parts, as visually presented in Figure 4:

(1) the host issues a read command to the device, which

specifies the size and location of the data to be read; (2) the

peripheral responds with the requested data; (3) the peripheral

responds with a status packet to indicate that the transfer is

either successful or unsuccessful.

Within the USB driver, two different methods control

these three transactions. The usb_store_msg_common

method transfers the command packet and receives the status

packet, while the usb_stor_bulk_transfer_sglist

function receives the actual data from the device. To perform

precise timing measurements of these transactions, Time-Print

leverages a low overhead and high granularity timing source,

the CPU timestamp counter (TSC), which is a monotonic 64-bit

register present in all recent x86 processors. While initially

designed to count at the clock speed of the CPU, most recent

systems implement a ‘constant TSC’, which ticks at a set

frequency regardless of the actual CPU speed. This feature

enables Time-Print to precisely time the data transmission

phase, regardless of the underlying CPU frequency. We utilize

the built-in kernel function rdtsc() both before and after

each transaction to record the precise amount of time it takes

for the execution of each interaction.

With the collected timing information, Time-Print further

integrates a low-overhead storage and reporting component for

this timing information. This component modifies the USB

driver to maintain a continuous stream of timing information

for the drive. Specifically, we augment the us_data structure

present in the USB storage header to contain arrays to keep

track of command opcode, size, address, and TSC value for

each transaction.

To transfer the timing values and record them (for prototype

purposes), we implement a character device within the USB

storage driver to transfer the timing information to the userspace

for further processing. Since accessing the TSC is designed to

be a low overhead function, the induced overhead is negligible

(more discussion on the overhead is presented in Section VII).

To ensure minimal performance impact, once a device has been

approved, the timing and storage functionality can be disabled.

B. Exercising the USB Flash Drive

As discussed in Section III-A, it is difficult to build a reliable

timing-based fingerprint based on the information leaked from

the USB handshake and enumeration process, due to its variable

nature. Instead, we develop a common test pattern that can be

applied to any USB device. In particular, we generate a script

with a random pattern of reads in different sizes from different

offsets within the drive. The script is executed whenever a new

USB device is detected by the host system. This procedure

ensures a consistent number of reads from different locations

on the drive allowing for the creation of a statistical, timing-

based fingerprint. Meanwhile, reading from multiple locations

with different sizes is necessary as it provides a better chance

of generating a unique fingerprint for the flash drive. According

to Micron [39], the NAND flash blocks built into a USB flash

drive are at least 128KB, while each logical block address that

can be accessed by the host system corresponds to a 512-byte

chunk. As the logical to physical mapping is opaque to the

user, it is challenging to know whether a large read from a

specific location involves any accesses to multiple contiguous

flash blocks, multiple blocks in different locations, or only a

single block. By attempting to generate as many different types

of accesses as possible, Time-Print can better extract the subtle

timing differences caused by those accesses.

C. Preprocessing Timing Values

As shown in Figure 4, there are three packets exchanged

between the host and peripheral: the original command, the

responding data packet, and the transfer status. We need to

capture and record the timing values for each packet from

the host’s perspective. Specifically, a timestamp is recorded

upon the entry and exit of each of the two functions listed

above. Each timestamp also includes the following meta-data:

command opcode, the size of the packet, and the offset the data

is coming from. The preprocessing step of Time-Print filters

any commands that are not read commands from the recording,

and searches for the beginning of the commands from the read

script to discount any packets that are issued as part of the drive

enumeration. As the goal of the fingerprint system is to focus

specifically on the time it takes for the drive to access blocks of

the USB device, not the timing between packets, we calculate

the time latency between when the host finishes sending the

command packet and when the host finishes receiving the data

response packet from the drive.

The next step is to organize this raw timing information,

which contains timing data from a multitude of locations and

sizes. We group them into separate bins where each contains

one size and address offset. Grouping the timing results by

read size and offset ensures that each timing sample within a

group corresponds to a single action or group of actions within

the drive, allowing for meaningful statistical analysis.

D. Classification

With the timing information grouped by size and offset,

we can leverage features and machine learning techniques

to create a fingerprint for each device. Based on the trained

Device Manufacturer Device Name Size Flash Controller Number of Devices USB Protocol

SanDisk Cruzer Blade 8GB SanDisk 10 USB 2.0

Generic General UDisk 4GB ChipsBank CBM2199S 10 USB 3.0

SanDisk Ultra 16GB SanDisk 10 USB 3.0

Samsung BAR Plus 32GB Unknown 4 USB 3.1

PNY USB 3.0 FD 32GB Innostor IS902E A1 1 USB 3.0

Kingston DataTraveler G4 32GB SSS 6131 1 USB 3.0

Kingston DataTraveler SE9 64GB Phison PS2309 1 USB 3.0

PNY Elite-X Fit 64GB Phison PS2309 1 USB 3.1

SMI USB Disk 64GB Silicon Motion SM3269 AB 1 USB 3.0

SMI USB Disk 64GB Silicon Motion SM3267 AE 1 USB 3.0

SanDisk Cruzer Switch 8GB SanDisk 1 USB 2.0

SanDisk Cruzer Glide 16GB SanDisk 2 USB 2.0

TABLE I: USB mass storage devices utilized in the evaluation of Time-Print.

fingerprints, Time-Print can reject or accept devices. For the

different security scenarios mentioned in the threat model,

Time-Print uses different algorithms for better performance.

Section VI further presents the details for different scenarios.

V. EVALUATION SETUP

To demonstrate the effectiveness and potential applications

of Time-Print, we build a testbed to extract fingerprints from

43 USB mass storage devices. In this section, we describe the

equipment utilized, the detailed data collection methodology,

the read sequence utilized, and how we denote the training

and testing datasets.

A. Experimental Devices

We utilize the following devices and system configurations

to gather fingerprints.

Host System, OS, and Driver Modifications. Our host

system is a DELL T3500 Precision tower. The system contains

an Intel Xeon E5507 4 core processor with a clock speed of

2.27GHz and 4GB of RAM. The USB 2.0 controllers are Intel

82801JI devices. We utilize a Renesas uPD720201 USB 3.0

controller (connected via PCI) for USB 3.0 experiments.

The host runs Ubuntu 18.04 LTS and we modify the USB

storage drivers as detailed in Section IV-A2. Namely, we modify

the USB driver to record the timing information for the start

and completion of each USB packet transmission that is a part

of the USB storage stack. Each time a device is connected,

a data structure is created to store the timestamp and packet

metadata information. This data structure is deleted upon device

disconnect. A character device is inserted into the USB driver

code to facilitate the transfer of this timing information to log

files after the completion of drive fingerprinting operations.

USB Devices. We test the performance and applicability

of Time-Print with 12 unique USB models and 43 different

USB devices. Table I lists the device manufacturer, name,

size, controller, number of devices, and protocol for every

2Since Time-Print is entirely software-based, it could reasonably be extended
to macOS and Windows with cooperation from developers.

device used in our experiments. We select these brands to

create a broad dataset that contains a number of the most

popular devices on the market (purchased by users on Amazon

as of September 2020). Each device is analyzed with no

modifications to the firmware of the device. To ensure fairness,

all devices are zeroed and formatted as FAT32 with an

allocation size of 4KB, and are identically named as ‘USB 0’.

We extract the device controller name by using Flash Drive

Information Extractor [52]. Of note, SanDisk does not publicly

identify the versions of their flash controllers and simply reports

the name ‘SanDisk’.

USB Hub and Ports. To facilitate testing of the USB drives,

we utilize an Amazon Basics USB-A 3.1 10-Port Hub that we

connect to the inbuilt USB 2.0 Intel 82801JI hub on the host

for USB 2.0 experiments and to the Renesas uPD720201 USB

3.0 hub for USB 3.0 testing.

B. Data Collection

Given our setup, we implement a script to gather data from

multiple USB devices at once. The Amazon Basics USB hub

utilized in our experiment can selectively enable/disable the

power connected to each specific port. We implement this

functionality through the uhubctl [63] library and simulate

the physical unplugging and replugging of each USB device

between every sample.

To reduce any impact on the precision of the timing within

the driver, which is of the utmost importance for fingerprint,

we utilize the Linux cpuset utility to isolate the USB storage

driver process to its own CPU core. This largely prevents

interference from context switches. Furthermore, since some

CPUs do not guarantee that the TSC is synchronized between

cores, it is necessary to ensure that all measurements are

gathered from the same core.

To better explain the overall testing methodology, we further

present the sample acquisition process with an example of 10

different USB drives. Before testing, each port on the USB

hub is disabled such that no power is provided to a plugged-in

device. We then plug each drive into a port on the USB hub and

Size: 16KB

Loc: 0

Size: 32KB

Loc: 0

Size: 64KB

Loc: 0

Size: 64KB

Loc:M

Group 1

Group 2

Group 3

Group N

Raw

Samples
Grouped

Samples Features

Mean N

Mean 2

Mean 1 1D

Histogram N

Histogram 2

Histogram 1 2D

Classifiers

K-means

Neural

Networks

Scenario ❶

Scenarios ❷❸

Fig. 5: Flow of generating 1D features from the raw fingerprint samples of a drive as used for different model identification

(top) and 2D features as used for individual device classification (bottom).

record the mapping of the hub port to drive ID (to match each

sample to a specific drive). The fingerprint gathering script

enables the first port on the USB hub and waits for the USB

driver process to be launched. Upon launch, the driver process is

isolated to a single core of the CPU to ensure maximum timing

precision. Next, we launch the fingerprinting script that initiates

a series of reads of different sizes and in different locations

on the drive. The returned data is not recorded because only

the timing information of these reads is important. Once the

collection script completes, we mount the character device and

write all of the recorded timing information to a log file. The

system then unmounts the character device and USB device

and disables the USB port to simulate unplugging the device.

We also simulate non-idle system states: the Linux stress

utility is run to fully utilize one CPU core on every other

sample. The above process is repeated for the next port on the

USB hub. All drives are tested in a round-robin fashion.

Once 20 fingerprints have been gathered from each drive,

we physically unplug each drive and plug it into a different

port on the USB hub; this ensures that any difference observed

in the readings is caused by the individual USB drives, not the

USB port.

C. Fingerprint Script

To gather a fingerprint, we utilize a script of 2,900 reads.

Each read is randomly chosen to be of size 16KB, 32KB,

or 64KB, and to access six logical blocks at 0x0, 0x140000,

0x280000, 0x3c0000, 0x500000, 0x640000. The block ad-

dresses are spread out in an attempt to access diverse physical

locations on the drive. To ensure that any uniqueness observed

in the fingerprint is caused by physical variations in the drive

accesses and not script variations, the script is randomly

generated once and then used for each device.

D. Training and Testing Datasets

As mentioned above, in our experiments, fingerprints are

gathered in a round-robin fashion from devices in a set of 20.

After collecting 20 fingerprints for all drives, all devices are

physically unplugged and then plugged into different ports.

We thus refer to a group of 20 fingerprints as a ‘session’ of

data. For all devices listed in Table I, we gather 4 sessions

of fingerprints (i.e., 80 fingerprints). We then conduct 4-fold

cross-validation by selecting 3 sessions for training, and 1

session for testing.

VI. TIME-PRINT RESULTS

To evaluate the effectiveness of Time-Print, we conduct

a series of experiments in the three scenarios listed in

Section II, namely, identifying devices with different brands,

identifying unseen devices of the same brand, and auditing

(i.e., classification on all insider devices).

A. Scenario ❶: Brand Identification

We first examine the accuracy for identifying a random

(unknown) USB device of a brand different from approved

devices. For instance, a system administrator would like to

prevent a dropped device attack where a careless employee

plugs in a malicious unauthorized device. While Figure 2 (in

Section 2) shows that this timing-based fingerprint has the

potential to be very effective, here we quantitatively evaluate

all devices listed in Table I.

Approach. To accomplish this task, we expect that Time-

Print trained on a specific device should always accept that

device while rejecting all other devices with different models

and brands. Thus, we design a single-class classification system

using the K-Means algorithm. The one class classification

system creates clusters of samples from the approved device

and draws a decision boundary to reject any readings from

devices of other brands or models.

Particularly, K-Means requires that each data sample is

presented as a 1D feature list. K-Means utilizes this feature

list and a distance metric to calculate a sample to sample

distance by examining the features of each sample, and groups

the samples into clusters. Once the algorithm converges, we

Training Devices

Generic
SanDisk

Cruzer Blade

Samsung

Bar Plus

SanDisk

Ultra

T
es

ti
n

g
D

ev
ic

es

Generic 99.9% 0.0 0.0 0.0

SanDisk

Cruzer Blade
0.0 98.8% 0.0 0.0

Samsung

Bar Plus
0.0 0.0 99.7% 0.0

SanDisk

Ultra
0.0 0.0 0.0 99.9%

Other USB2 0.0 0.0 0.0 0.0

Other USB3 0.0 0.0 0.0 0.0

TABLE II: Percentage of samples accepted when trained for

each device model.

calculate the distance of each training sample to its closest

cluster. The maximum distance value is then used to set a

decision boundary. In our case, for a fingerprint to be accepted

by the clustering algorithm, it must be within the decision

boundary of one of the pre-trained clusters. We first preprocess

each sample into different chunks by separating each reading

based on the size and location offset of the measurement.

With the size and locations grouped, we calculate the mean of

each group, generating a 1D feature list for each sample, as

illustrated in the upper part of Figure 5.

Training and testing. We train our one-class classifier on

four types of devices: (1) the Generic Drives (10 devices),

Samsung Bar Plus (4 devices), SanDisk Ultra (10 devices),

and SanDisk Cruzer Blade devices (10 devices). We then test

the classifier against all other devices listed in Table I. For

clarity of presenting the results, we group all extra devices

with the USB 3.X protocol into a set called ‘other USB3’, and

all extra devices with the USB 2.0 protocol into a set called

‘other USB2’.

For example, to test the accuracy for the Generic Drives,

we have four sessions (80 fingerprints in total) of data for all

ten devices in this model. For Generic Drive #1, we train the

classifier using three sessions of data and test the classifier

using the remaining one session of data, and the data from

all other devices from different brands/models. We repeat the

experiment for each Generic device and report the average

accuracy.

Accuracy. The results are presented in Table II, showing

very high accuracy: an average true accept rate of 99.5% while

rejecting all drives of different models and brands (i.e., zero

false accept rate). As mentioned in the threat model, Time-Print

is mainly designed for use in a high-security system. Such

a system should always reject unknown models to minimize

security risks. While the true accept rate of 99.5% may still

reject a legitimate device, with a very small chance, for the

first trial, the user can simply re-plugin the USB drive and

re-authenticate with the system. The probability of being

rejected twice in a row is only 0.0025%. In other words, the

probability of a legitimate device being accepted after two

trials is 99.9975%, which is very close to one.

Overall, these results show that Time-Print can accurately

distinguish unknown devices with different brands and models

from legitimate devices.

B. Scenario ❷: Same Brand Device Identification

The second scenario requires Time-Print to identify unseen

devices of the same brand and model, which is a much more

difficult task as all devices share the same design.

Approach. To this end, we utilize a 2-D convolutional

neural network for the classification task. As our task is not

to locate the best possible network for classification but to

demonstrate that fingerprinting a USB mass storage device is

possible, we adopt a standard classification network design.

For reference, our network architecture is provided in Table VI

in the Appendix.

For preprocessing, similarly to Scenario ❶, we separate the

raw timing information by size and location. As the script

contains six possible locations and three possible sizes, the

separation procedure produces 18 distinct collections of timing

data for each fingerprint gathered.

To utilize these values within a neural network, we transform

their raw format (a collection of numbers ranging from one to

ten million) to a value range that works for neural networks

(e.g. 0 to 1). Especially, we convert the data from each group

to a histogram, with all data being scaled by the group global

minimum and maximum values, from the entire training set.

Such a method creates a fine-grained representation of the

signal. This also makes sense as large reads take much longer

to complete than short reads, and a full ranged histogram would

contain a large amount of unimportant zero values. To ensure

experimental integrity, the individual minimum and maximum

ranges are recorded and used to process the testing set.

Each histogram can be represented as a 1D vector of

measurement frequency, and the histograms for all groups

can be concatenated together to create a 2D input vector to the

classification network. This process is illustrated in the lower

part of Figure 5. Another advantage of the histogram and neural

network combination is that the network can rapidly be tuned

to work for different drives, since the number of histogram

bins, readings per size and location, or input trace can easily be

adjusted while maintaining a consistent preprocessing pipeline.

Training and testing. To achieve accurate identification,

system administrators can purchase multiple devices from

the same brand and model to serve as ‘malicious’ devices

to train the classifier. We emulate this scenario by examining

the SanDisk Cruzer Blade, SanDisk Ultra, and the Generic

drives. We have 10 devices for each model. Among the 10

devices, for training, one device is selected as the ‘legitimate’

drive, and 8 of the remaining 9 devices are chosen as ‘malicious’

drives; then the last is used as the ‘unseen’3 device for testing

purposes. During training, we use 60 samples of each drive

involved. During testing, we utilize the remaining 20 samples of

each ‘legitimate’ drive and 20 samples of each ‘unseen’ drive.

3The ‘unseen’ device is equivalent to an attacker’s ‘malicious’ device, and
we use a different term to differentiate the malicious device in testing from
those used in training.

Generic
SanDisk

Cruzer Blade

SanDisk

Ultra

TAR TRR TAR TRR TAR TRR

Raw 92.2% 93.8% 96.5% 89.2% 97.6% 90.6%

Augment 97.3% 91.7% 98.0% 93.5% 98.7% 91.4%

TABLE III: Average True Accept Rate (TAR) and True Reject

Rate (TRR) for same model device identification.

To ensure fairness and remove any influence of randomness,

we test all 90 possible combinations (10 possible ‘legitimate’

drives × 9 possible ‘unseen’ drives) and cross-validate each

by rotating the samples utilized for training and testing.

Accuracy. Table III presents the results, showing a com-

pelling average true accept rate (TAR) of 95.4% and an average

true reject rate (TRR) of 91.2%.

After investigating the false acceptances, we find that most

false acceptances occur in pairs. We realize that the problem of

classifying an unknown drive is likely to benefit from synthetic

data. Augmenting the training set with random variations (in an

attempt to simulate more unknown devices), or with samples

from more ‘malicious’ devices may better solidify the decision

boundary of the network, leading to higher overall accuracy.

We also augment the samples of the ‘legitimate’ drives, albeit

with much smaller perturbations, to increase the true accept rate.

We randomly select samples from the training set and perturb

them with noise. This augmentation procedure improves the

results, increasing the overall average accuracy to 95%. More

specifically, the average true accept rate increases to 98.0%,

and the average true reject rate increases to 92.2%.

Overall, these results indicate that our approach has enough

information to uniquely fingerprint USB drives and that Time-

Print can even detect unseen devices of the exact same brand

and model.

C. Scenario ❸: Auditing / Classification

We finally evaluate the effectiveness of Time-Print on the

auditing scenario, in which a system administrator needs to

determine exactly which device had files copied to/from it (to

track/identify an insider threat). We evaluate the accuracy for

Time-Print to uniquely identify a single device from a pool of

devices that are authorized for use.

We employ a network with a similar architecture to the

one employed in Scenario ❷ and shown in Table VI of the

Appendix. Since the goal is to identify each individual drive,

we modify the final output layer of the network to contain the

same number of neurons as devices that we attempt to classify.

We utilize the same histogram transformation from Scenario ❷,

where each sample is separated by size and location and then

converted to a histogram for utilization in the neural network.

Similarly to Scenario ❷, we train and test (with cross-

validation) a classifier for each model (i.e., only drives in one

model are trained and tested), as we expect that an organization

that adopts a device authentication system like Time-Print will

limit the usage of USB drives to a particular model. Our

classification results are listed in Table IV for the SanDisk

Device Name (# of Devices) Classification Accuracy

SanDisk Cruzer Blade (10) 98.6%

Generic Drive (10) 99.1%

SanDisk Ultra (10) 98.7%

Samsung Bar Plus (4) 98.4%

TABLE IV: Classification accuracy for each drive type in

Scenario ❸.

Cruzer Blade, Generic, SanDisk Ultra, and Samsung Bar Plus

devices. We can see that Time-Print achieves accuracy above

98.4% for varied devices, including those from some of the best

selling manufacturers (SanDisk and Samsung). Furthermore,

the data for SanDisk and the Generic devices demonstrates that

the variability between drives is rich enough to create distinct

classification boundaries among different drives. Finally, this

data shows that USB fingerprinting is not limited to a single

manufacturer or USB protocol. In short, Time-Print is able to

fingerprint a USB drive within the same brand and model for

accurate classification.

VII. PRACTICALITY OF TIME-PRINT

With the viability of fingerprinting USB mass storage devices

demonstrated, we further examine the practicality of Time-

Print in multiple aspects, including the latency of fingerprint

acquisition, the impact of host system hardware variations on

fingerprint accuracy, device usage, location accesses, whether

just the flash controller itself can be utilized for fingerprinting,

and how Time-Print might be deployed in the real world.

A. System Latency

The time to acquire the USB fingerprint varies depending

upon the number of reads and the protocol used by the device

(e.g., USB 2.0 or 3.0). We measure the time required to capture

the fingerprint from a SanDisk Cruzer Blade USB 2.0 device

and a SanDisk Ultra USB 3.0 device. The time cost of achieving

the results in Section VI is an average of 11 seconds on the

USB 2.0 drive and 6 seconds on a USB 3.0 drive, respectively.

The time difference is expected as the components of the USB

3.0 drives are faster to support the enhanced speed of the

protocol.

On the other hand, intuitively, fewer extra reads in the driver

should save time, but degrade the identification accuracy. We

further evaluate how the number of observed reads affects the

accuracy of Time-Print by truncating the gathered samples

and examining the accuracy in Scenario ❸ with the SanDisk

Blade and Ultra devices. The results are presented in Figures 6

and 7. Both figures show that the accuracy decreases by at

least a full percentage point when the number of samples is

halved. The degradation continues gradually on the USB 2.0

device (down to 95% accuracy when 30x fewer samples are

taken) and more steeply on the USB 3.0 device (reducing to

90% accuracy when 30x fewer samples are taken). Overall,

even with 10x fewer samples being used, Time-Print can still

achieve more than 94.5% accuracy while reducing the latency

to only about 1 second, since the time required to acquire a

fingerprint scales linearly with the number of extra reads.

Fig. 6: Classification accuracy degradation as the number of

samples is reduced (10 SanDisk Ultra USB 3.0 drives).

Fig. 7: Classification accuracy degradation as the number of

samples is reduced (10 SanDisk Blade USB 2.0 drives).

Such a result indicates that there exists a trade-off between

the time required to generate a fingerprint and the ability to

use the fingerprint for unique device authentication. System

administrators can utilize this knowledge to choose between

the time required to obtain a fingerprint for their system and

the desired security level.

B. Fingerprints with Hardware Variation

When the fingerprint data is acquired, it must pass through

a myriad of system components. For example, the data

transmission, beginning with the USB drive, must go through

the ports and hubs along its path, through the USB controller

on the motherboard, and finally through the bridge between the

motherboard USB controller and the processor. Each of these

system components may contain different levels of routing

logic and create timing variations in the fingerprint. Therefore,

we conduct several experiments to understand the impact of

hardware variations on fingerprint accuracy.

Different Ports and Hubs.

To understand the impact of using different ports and hubs,

we utilize the training data from Section VI, but gather new

testing sets with both Generic and SanDisk Blade devices. We

conduct two tests: (1) the USB hub is plugged into a different

Training System Testing System

Processor
Intel Xeon E5507

4C/4T @ 2.27 GHz

Intel Xeon W3550

4C/8T @ 3.06 GHz

Motherboard Dell 09KPNV Dell 0XPDFK

RAM 2x2GB 1x8GB

USB Controller Intel 82801JI Intel 82801JI

TABLE V: System configurations for cross host investigation.

host port and (2) another Amazon Basics USB-A 3.1 10-Port

Hub is used to test the accuracy of these configurations with

the classifier and training data of Scenario ❸. We observe that

utilizing a different host port or a different hub slightly reduces

the accuracy from 99% to about 95% for the Generic devices

but has no effect on the SanDisk Blade devices.

Different Host. We further investigate the impact of different

host machines: can the same fingerprint be transferred between

different host machines? We expect to see a degradation in

accuracy as many factors (e.g., variations in the clock speed

of the processor, motherboard, etc.) are likely to alter the

fingerprint. To assess the impact, we gather a dataset on a

second host system with a different configuration (system

comparison is listed in Table V) using both the Generic and

SanDisk Blade devices. Again, we utilize Scenario ❸ as an

example to measure the accuracy degradation.

The main difference between the two host systems lies in

the different CPUs. The TSC tick rate (i.e., the rate at which

the TSC increments) is directly dependent on the base clock

speed of CPU. Thus, we prescale the data gathered on the

testing machine by multiplying the timing values by a factor of

0.7386, which is the ratio of 2.26 GHz on our training machine

to 3.06 GHz on the testing machine.

With this preprocessing step, the SanDisk Blade devices

experience no accuracy degradation, and the Generic drives

experience an 11% accuracy decrease to 88%, which is still a

promising finding. To understand the reason for these different

behaviors, we uncover that the Generic devices appear to

produce noisier distributions with more similar peak locations

than the SanDisk Blade devices, as shown in Figure 2. We

infer that such increased noise coupled with different electrical

paths (e.g., different hubs, ports, machines) makes the Generic

devices harder to classify in a cross host scenario. However,

it should be noted that in an enterprise environment, people

usually purchase a number of identical host machines with

the same model of processor, motherboard, USB controllers,

etc. As a result, we might experience even better fingerprint

transfer between hosts. Meanwhile, this host transfer is not

required in our threat model, as system administrators can train

an authentication system for each protected computer.

C. Fingerprint Robustness with Device Usage

Flash devices utilize a logical to physical mapping within

the flash translation layer to ensure that the flash blocks are

evenly used within a device (a process called wear-leveling).

When the usb-storage driver attempts to write data to an

address, it specifies a logical address which the flash translation

layer converts to a physical address. Because flash blocks are

modified at the block level, instead of the bit level, a write

operation requires the data to be written to a new empty block

and the logical to physical address mapping is updated. Since

Time-Print utilizes the physical timing characteristics of specific

physical blocks (accessed via logical addresses), this remapping

might degrade the accuracy of the fingerprint as the device is

written to.

To investigate the impact of this remapping, we conduct

an experiment by writing hundreds of random files to five

SanDisk Cruzer Blade devices and track the accuracy of the

classification system by gathering a sample between each write.

In total, we write 6,520MB of data to each 8GB drive.

The results demonstrate that Time-Print is somewhat resilient

to drive writes, experiencing no accuracy degradation until

about 2.3GB at which point the accuracy rapidly decreases. To

better understand the cause of this sudden accuracy degradation,

we examine the behavior of the actual flash drive. We utilize

the tool hdparm to observe the actual logical block address

(LBA) of each file, and notice that the drive attempts to write

files to the lowest available LBA. The classification neural

network essentially performs a matching task, attempting to

classify the trace as the class that is the closest to the training

samples. After more than half of the LBAs utilized for the

fingerprint are written, the neural network is no longer able

to perform this task reliably, since the majority of the LBAs

are no longer the same. To address this problem, there are two

solutions: LBA reservation and manufacturer support.

LBA reservation. If Time-Print can prevent the drive from

updating the virtual to physical mapping of the blocks utilized

for fingerprinting, it can prevent drive writes from affecting

the fingerprint, as the drive will not reassign pages that are in

use. This can be accomplished by placing small placeholder

files4 at their locations for LBA reservation. We implement

this mechanism by copying large files (to occupy large swaths

of LBAs) and small files into the chosen fingerprint locations,

and then deleting the large files. We use the hdparm tool to

check the LBAs used by the small fingerprint files. All of the

small files combined together are only 768KB in total, thus

inducing low overhead. We then write 7.3GB (the capacity of

the drive) data to the drive in 16MB chunks, and observe no

changes in the histograms and no accuracy degradation. This

solution can adequately accommodate the normal drive usage

as long as the small fingerprint files are not deleted (by users).

Manufacturer Support. This is the most resilient solution

but requires collaboration with drive manufacturers. Manufac-

turers already provide extra flash blocks that are hidden from

users to facilitate better wear leveling and drive performance.

They can similarly reserve extra blocks for fingerprinting

on new devices. This solution can ensure that Time-Print

fingerprints are unaffected by write operations and further

ensure that accidental deletion of the contents of the drive will

not interfere with the fingerprint.

4A placeholder file should be a multiple of the remappable block size of
the device, to ensure that only the placeholder file fully occupies a specific
location, preventing unintentional remapping.

D. Spoofing A Fingerprint

An advanced attacker might design a malicious device to

deceive Time-Print by mimicking a legitimate drive (e.g.,

replicate the physical fingerprint with an FPGA based system).

While all of the experiments in this study utilize a static

read sequence of 2,900 reads, in a real deployment, the read-

sequence, including the specific locations and number of reads,

can be either a secret (stored on the protected system) or

randomly generated based upon a device identifier (e.g., use

the serial number as a random seed). Since attackers are unable

to know the exact locations utilized by Time-Print, they can

only fingerprint random locations and hope that Time-Print

would accept the spoofed values.

To assess the security of Time-Print against this type of

advanced attack, we run an experiment where we generate

random choices of locations to test whether Time-Print accepts

a legitimate drive fingerprinted in the wrong locations. To

emulate an attacker who is unaware of the correct sample

locations, we gather a new dataset for the drives that are

sampled in the wrong locations. More specifically, we generate

a script that randomly chooses 6 locations on a drive and

generates reads every time the drive is plugged in. We test

Time-Print similarly to Scenario ❷ wherein we train Time-Print

to accept samples in the correct locations of the legitimate

drive and to reject samples from other devices. To further

augment the training set, we add random noise to some of

the training samples from the legitimate drive (similarly to

Scenario ❷). Our testing set consists of the samples from the

legitimate device taken in the correct locations, which should

be accepted, and the samples from the legitimate device taken

in the wrong locations (to emulate a spoofing attack) that

should be rejected. We test this setup with the SanDisk Blade,

Ultra, and Generic devices and observe an average of 96.4%

true accept rate and 99.6% true reject rate. This result indicates

that Time-Print is very robust against such ‘spoofing’ attacks.

E. Other Considerations

We further investigate whether better accuracy could be

obtained by increasing the number of addresses accessed by

Time-Print. Theoretically, accessing more locations on the drive

should provide more information to better identify drives. To

this end, we conduct experiments on accessing 18 locations (as

opposed to 6), while maintaining the same number of total extra

reads. We gather data on the SanDisk Cruzer Blade, Generic,

and SanDisk Ultra drives, and evaluate the performance in

Scenarios ❷ and ❸. We observe that while the individual

accuracy of each drive type fluctuates slightly, the average

performance (across all three models) in each scenario remains

similar.

Another consideration is the modification of the access

order. We run an experiment with five SanDisk Cruzer Blade

devices by randomizing the access order for each sample.

There is no accuracy degradation. We also examine whether

the device format affects Time-Print. We reformat all of the

devices to EXT2 and retrain Time-Print. Similarly, no accuracy

degradation is observed. This is expected as the file system

format is another virtual layer above the physical pages of the

USB device and therefore should not affect the fingerprint.

F. Fingerprint the Flash Controller

We also examine whether the timing information from only

the flash controller could be utilized to identify the drives.

We investigate this by utilizing the timing information of the

‘transfer status’ packet (a packet that comes only from the

USB controller on the mass storage device), instead of the

timing information for returning the data. We test this on both

the SanDisk Cruzer Blade and the SanDisk Ultra devices. We

find that utilizing only this information reduces accuracy from

greater than 98% to 65% and 45% for the two types of devices,

respectively. This shows that while the timing information of

the flash controller can be utilized to identify some devices, it

alone is insufficient to create a robust fingerprint.

G. Real-World Deployment of Time-Print

We have demonstrated that Time-Print can be utilized

in various scenarios for USB drive authentication. Each of

the scenarios can serve as a module in a more complete

security system that might be deployed in the real world.

For example, a system administrator concerned mainly about

protecting systems from stray external devices can employ our

system as demonstrated in Scenario ❶, while an administrator

with concerns about targeted attacks might choose to utilize

Scenarios ❶ and ❷ together, first rejecting unknown models

and then ensuring that the device is legitimate. Scenario ❸

can be further employed to track user activities for auditing

purposes. Time-Print can also be integrated into other USB

security systems, which offer firewall like protections [4], [58],

[59] but rely on the drive to correctly report its identification.

The identification capability of Time-Print will provide a

stronger defense against skilled attackers who can alter device

identifiers [23], [30].

H. Future Work

Our study has demonstrated that Time-Print can accurately

authenticate USB drivers from the same brand and model. In the

future work, we plan to further explore the timing channel by (1)

examining devices from more different scenarios, such as the

same brand/model but with different capacities, (2) considering

the wide deployment of Time-Print and user enrollment in

practice, and (3) investigating the potential attacks against

Time-Print.

In particular, strong FPGA attackers who can replay the

timing information of the whole USB driver (e.g., physically

unclonable function (PUF) [48] related profiling/modeling

attacks) might potentially break Time-Print. Such attackers

can record and profile the timing of all locations on the drive,

and then answer arbitrary queries with an FPGA. However,

this requires significant efforts (both time and storage) from

attackers to fully understand the patterns (e.g., building the

histogram for each location). In the future work, we will assess

the robustness of Time-Print against such strong FPGA attacks.

VIII. RELATED WORK

In this section, we survey the research efforts that inspired

our work as well as highlight the key differences between our

work and previous research.

A. Device Fingerprinting

Uniquely identifying individual physical devices has long

been of interest to the security community [10], [11], [35], [46],

[68]. The ability to track and authenticate a physical device

accurately can help increase security and serve as another factor

in multi-factor authentication. As such, many different methods

for device fingerprinting have been presented.

One of the most common methods for fingerprinting is

the utilization of (un)intentional electromagnetic frequency

radiation. Cobb et al. [15], [16] showed that the process

variations in the manufacturing process cause subtle variations

in the unintentional electromagnetic emissions, which can be

utilized to generate a valid fingerprint for similar embedded

devices. Cheng et al. [14] further found that unique fingerprints

can be created for more sophisticated systems like smartphones

and laptops. Other prior works [9], [20], [43], [47] study the

fingerprint generation in radiating electromagnetic signals for

communication (e.g. Zigbee, WiFi, etc.). The most similar work

to Time-Print is Magneto [27], which uses the unintentional

electromagnetic emissions during device enumeration on a

host to fingerprint USB mass storage devices. While their

work demonstrates the ability to classify different brands and

models accurately, the system requires expensive measurement

equipment. By contrast, our work requires no special equipment

and uncovers a novel timing channel that can be used to further

identify devices within the same brand and model.

Device serial numbers, descriptors, and passwords are

also used to thwart the connection of unauthorized USB

devices [1], [28]. These defenses inherently trust that the USB

device is accurately reporting software values. TMSUI [66],

DeviceVeil [55], and WooKey [7] use specialized hardware to

uniquely identify individual USB mass storage devices, and as

a result, most of these systems are not compatible with legacy

devices. Instead, Time-Print is completely software-based and

does not require any extra or specialized hardware. The USB

3.0 Promoter Group has proposed a USB 3.0 Type-C PKI-

based authentication scheme [62] to identify genuine products,

but these mechanisms are not designed to uniquely identify

individual devices. Other prior works utilize a USB protocol

analyzer [37] or smart devices [5] to identify a host system

and its specific operating system by inspecting the order of

enumeration requests and timing between packets [18]. Unlike

those works, the objective of Time-Print is to identify the

peripheral device, instead of the host.

B. Flash Based Fingerprints

Several prior works have investigated whether the properties

of flash devices can be utilized for fingerprinting. For example,

device fingerprints are constructed using programming time

and threshold voltage variations [45], [64]. Others [22], [31],

[34], [41], [50], [54], [65] further investigate the design of

physically unclonable functions in flash chips and explore the

impact of write disturbances, write voltage threshold variation,

erase variations, and read voltage threshold variation. Sakib et

al. [49] designed a watermark into flash devices by program-

erase stressing certain parts of a device.

The above techniques work at a physical level, which requires

control and functionalities that may not be available in a cost-

constrained, mass-market device like a USB flash drive. Time-

Print only utilizes read operations (a common function available

on all USB flash drives) and thus is non-intrusive. In addition,

while these technologies could be incorporated into new devices,

Time-Print is fully compatible with existing devices and only

requires a slight modification to the host driver.

C. USB Attacks and Defenses

USB is an easy to use and trusting protocol, which imme-

diately begins to communicate with and set up devices when

they are plugged in. Tian et al. [60] surveyed the landscape of

USB threats and defenses from USB 1.0 to USB C, showing

that most existing defenses that require extra hardware do not

adequately work with legacy devices. Several attacks [30], [23]

have demonstrated that modifying the firmware of USB devices

can rapidly subvert a system.

Many defenses have been proposed to mitigate the problem.

For example, the TPM (trusted platform module) has been used

to protect sensitive information [6], [12]. GoodUSB [58] at-

tempts to thwart firmware modification attacks [30] by creating

a permission system so that users can specify permissions for

devices. VIPER [38] proposes a method to verify peripheral

firmware and detect proxy attacks via latency based attestation.

Hernandez et al. [24] automatically scanned USB firmware for

malicious behaviors. USBFILTER [59] presents a firewall in

the USB driver stack to drop/allow USB packets based on a set

of rules. Similarly, Cinch [4] creates a virtual machine layer

between USB devices and the host machine to act as a firewall.

Johnson et al. [32] designed a packet parser to protect the

system from malformed USB packets. Tian et al. [57] proposed

a unified framework to protect against malicious peripherals.

Other prior works like USBeSafe [33] and USBlock [40] utilize

machine learning algorithms to analyze the characteristics of

USB packet traffic to prevent keyboard mimicry attacks [30].

Like those works, Time-Print is a software-based approach to

enhancing USB security.

IX. CONCLUSION

This paper presents Time-Print, a novel timing-based fin-

gerprinting mechanism for identifying USB mass storage

devices. Time-Print creates device fingerprints by leveraging

the distinctive timing differences of read operations on different

devices. We develop the prototype of Time-Print as a completely

software-based solution, which requires no extra hardware

and thus is compatible with all current USB mass storage

devices. To assess the potential security benefits of Time-

Print, we present a comprehensive evaluation of over 40 USB

drives in three different security scenarios, demonstrating Time-

Print’s ability to (1) identify known/unknown device models

with greater than 99.5% accuracy, (2) identify seen/unseen

devices within the same model with 95% accuracy, and (3)

individually classify devices within the same model with

98.7% accuracy. We further examine the practicality of Time-

Print, showing that Time-Print can retain high accuracy under

different circumstances while incurring low system latency.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

insightful and constructive comments, which helped us to

improve the quality of this paper. This work was supported in

part by the National Science Foundation (NSF) grants DGE-

1821744 and CNS-2054657 and the Office of Navy Research

(ONR) grant N00014-20-1-2153.

REFERENCES

[1] USBGuard. https://github.com/USBGuard/usbguard.

[2] Exploring Stuxnet’s PLC Infection Process.
https://community.broadcom.com/symantecenterprise/communities/
community-home/librarydocuments/viewdocument?Document
Key=ad4b3d10-b808-414c-b4c3-ae4a2ed85560&CommunityKey=
1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments, 2010.

[3] USB Implementers Forum Revision 2.0. Universal Serial Bus Power
Deliver Specification, 2016.

[4] Sebastian Angel, Riad S. Wahby, Max Howald, Joshua B. Leners,
Michael Spilo, Zhen Sun, Andrew J. Blumberg, and Michael Walfish.
Defending against Malicious Peripherals with Cinch. In USENIX Security

Symposium, 2016.

[5] Adam Bates, Ryan Leonard, Hannah Pruse, Daniel Lowd, and Kevin
Butler. Leveraging USB to Establish Host Identity Using Commodity
Devices. In ISOC Network and Distributed System Symposium (NDSS),
2014.

[6] Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and Thomas Moyer.
Trustworthy Whole-System Provenance for the Linux Kernel. In USENIX

Security Symposium, 2015.

[7] Ryad Benadjila, Arnauld Michelizza, Mathieu Renard, Philippe Thierry,
and Philippe Trebuchet. WooKey: Designing a Trusted and Efficient USB
Device. In ACM Computer Security Applications Conference (ACSAC),
2019.

[8] Harita Bhargava and Sanjeev Sharma. Secured Use of USB over the
Intranet with Anonymous Device Identification. In IEEE Conference on

Communication Systems and Network Technologies (CSNT), 2018.

[9] Trevor Bihl, Kenneth Bauer, and Michael Temple. Feature Selection
for RF Fingerprinting With Multiple Discriminant Analysis and Using
ZigBee Device Emissions. IEEE Transactions on Information Forensics

and Security, 2016.

[10] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan
Boneh. Mobile Device Identification via Sensor Fingerprinting.
https://arxiv.org/pdf/2002.05905.pdf, 2014.

[11] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh.
Wireless Device Identification with Radiometric Signatures. In ACM

International Conference on Mobile Computing and Networking (Mobi-

Com), 2008.

[12] Kevin R. B. Butler, Stephen E. McLaughlin, and Patrick D. McDaniel.
Kells: A Protection Framework for Portable Data. In ACM Annual

Computer Security Applications Conference (ACSAC), 2010.

[13] Eric Byres. The Air Gap: SCADA’s Enduring Security Myth. Communi-

cations of the ACM, 2013.

[14] Yushi Cheng, Xiaoyu Ji, Juchuan Zhang, Wenyuan Xu, and Yi-Chao
Chen. DeMiCPU: Device Fingerprinting with Magnetic Signals Radiated
by CPU. In ACM Conference on Computer and Communications Security

(CCS), 2019.

[15] William Cobb, Eric Garcia, Michael Temple, Rusty Baldwin, and Yong
Kim. Physical Layer Identification of Embedded Devices Using RF-
DNA Fingerprinting. In IEEE Military Communications Conference

(MILCOM), 2010.

[16] William Cobb, Eric Laspe, Rusty Baldwin, Michael Temple, and Yong
Kim. Intrinsic Physical-Layer Authentication of Integrated Circuits. IEEE

Transactions on Information Forensics and Security, 2012.

[17] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips.
Universal Serial Bus Specification, Revision 2.0, 2000.

[18] Andy Davis. Revealing Embedded Fingerprints: Deriving Intelligence
from USB Stack Interactions. Technical report, nccgroup, 2013.

[19] Douglas Gilbert. sg3 utils. https://github.com/hreinecke/sg3 utils.

[20] Clay Dubendorfer, Benjamin Ramsey, and Michael Temple. An RF-
DNA Verification Process for ZigBee Networks. In IEEE Military

Communications Conference (MILCOM), 2012.

[21] USB Implementers Forum. Defined Class Codes.
https://www.usb.org/defined-class-codes.

[22] Zimu Guo, Xiaolin Xu, Mark M. Tehranipoor, and Domenic Forte. FFD:
A Framework for Fake Flash Detection. In ACM Design Automation

Conference (DAC), 2017.

[23] hak5darren. USB Rubber Ducky. https://github.com/hak5darren/USB-
Rubber-Ducky, 2016.

[24] Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian, Tuba Yavuz, and
Kevin R.B. Butler. FirmUSB: Vetting USB Device Firmware Using
Domain Informed Symbolic Execution. In ACM Conference on Computer

and Communications Security (CCS), 2017.

[25] Hewlett-Packard, Intel, Microsoft, NEC, ST-NXP Wireless, and Texas
Instruments. Universial Serial Bus 3.0 Specification, Revision 1.0, 2008.

[26] Hewlett-Packard, Intel, Microsoft, Renesas, ST-Ericsson, and Texas
Instruments. Universal Serial Bus 3.1 Specification, 2013.

[27] Omar Adel Ibrahim, Savio Sciancalepore, Gabriele Oligeri, and
Roberto Di Pietro. MAGNETO: Fingerprinting USB Flash Drives via
Unintentional Magnetic Emissions. ACM Transactions on Embedded

Computing Systems, 2020.

[28] Advanced Systems International. USB-Lock-RP. https://www.usb-lock-
rp.com/.

[29] Jeffrey Robert Jacobs. Measuring the Effectiveness of the USB Flash
Drive as a Vector for Social Engineering Attacks on Commercial
and Residential Computer Systems. Master’s Thesis Embry-Riddle
Aeronautical University, 2011.

[30] Karsten Nohl Jakob Lell. BadUSB - On Accessories that Turn Evil.
Blackhat USA, 2014.

[31] Shijie Jia, Luning Xia, Zhan Wang, Jingqiang Lin, Guozhu Zhang, and
Yafei Ji. Extracting Robust Keys from NAND Flash Physical Unclonable
Functions. In Conference on Information Security (ISC), 2015.

[32] Peter C. Johnson, Sergey Bratus, and Sean W. Smith. Protecting Against
Malicious Bits On the Wire: Automatically Generating a USB Protocol
Parser for a Production Kernel. In ACM Annual Computer Security

Applications Conference (ACSAC), 2017.

[33] Amin Kharraz, Brandon L. Daley, Graham Z. Baker, William Robertson,
and Engin Kirda. USBESAFE: An End-Point Solution to Protect Against
USB-Based Attacks. In USENIX Research in Attacks, Intrusions and

Defenses (RAID), 2019.

[34] Moon-Seok Kim, Dong-Il Moon, Sang-Kyung Yoo, Sang-Hang Lee, and
Yang-Kyu Choi. Investigation of Physically Unclonable Functions Using
Flash Memory for Integrated Circuit Authentication. Transactions on

Nanotechnology, 2015.

[35] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure

Computing, 2005.

[36] David Kushner. The Real Story of Stuxnet, Feb 2013.

[37] Lara Letaw, Joe Pletcher, and Kevin Butler. Host Identification via USB
Fingerprinting. In International Workshop on Systematic Approaches to

Digital Forensic Engineering (SADFE), 2011.

[38] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. VIPER: Verifying
the Integrity of PERipherals’ Firmware. In ACM Conference on Computer

and Communications Security (CCS), 2011.

[39] Micron. NAND Flash 101: An Introduction to NAND Flash and How to
Design It In to Your Next Product, TN-29-19. Technical report, 2010.

[40] Sebastian Neuner, Artemios G. Voyiatzis, Spiros Fotopoulos, Collin
Mulliner, and Edgar R. Weippl. USBlock: Blocking USB-Based Keypress
Injection Attacks. In Data and Applications Security and Privacy.
Springer International Publishing, 2018.

[41] T Nguyen, Sunghyun Park, and Donghwa Shin. Extraction of Device
Fingerprints Using Built-in Erase-Suspend Operation of Flash Memory
Devices. IEEE Access, 2020.

[42] National Institute of Standards and Technology. Security and Privacy
Controls for Federal Information Systems and Organizations, 2020.

[43] J.L. Padilla, P. Padilla, J.F. Valenzuela-Valdés, J. Ramı́rez, and J.M.
Górriz. RF Fingerprint Measurements for the Identification of Devices

in Wireless Communication Networks Based on Feature Reduction and
Subspace Transformation. Measurement, 2014.

[44] Raymond Pompon. Attacking Air-Gap-Segregated Computers.
https://www.f5.com/labs/articles/cisotociso/attacking-air-gap-segregated-
computers, 2018.

[45] Pravin Prabhu, Ameen Akel, Laura M. Grupp, Wing-Kei S. Yu, G. Edward
Suh, Edwin Kan, and Steven Swanson. Extracting device fingerprints
from flash memory by exploiting physical variations. In Trust and

Trustworthy Computing. Springer Berlin Heidelberg, 2011.

[46] Sakthi Radhakrishnan, A. Selcuk Uluagac, and Raheem Beyah. GTID:
A Technique for Physical Device and Device Type Fingerprinting. IEEE

Transactions on Dependable and Secure Computing, 2015.

[47] Benjamin Ramsey, Michael Temple, and Barry Mullins. PHY Foun-
dation for Multi-Factor ZigBee Node Authentication. In IEEE Global

Communications Conference (GLOBECOM), 2012.

[48] Ulrich Ruhrmair and Jan Solter. PUF modeling attacks: An introduction
and overview. In 2014 Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2014.

[49] Sadman Sakib, Aleksandard Milenković, and Biswajit Ray. Flash
Watermark: An Anticounterfeiting Technique for NAND Flash Memories.
IEEE Transactions on Electron Devices, 2020.

[50] Sadman Sakib, Md Rahman, Aleksandar Milenković, and Biswajit
Ray. Flash Memory Based Physical Unclonable Function. In IEEE

SoutheastCon, 2019.

[51] Paul Sawers. US Govt. plant USB sticks in security study, 60% of
subjects take the bait. https://thenextweb.com/insider/2011/06/28/us-govt-
plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait/, 2011.

[52] ANTSpec Software. Flash Drive Information Extractor, 2019.

[53] Steve Stasiukonis. Social Engineering, the USB Way.
https://www.darkreading.com/attacks-breaches/social-engineering-
the-usb-way/d/d-id/1128081, 2006.

[54] Soubhagya Sutar, Arnab Raha, and Vijay Raghunathan. Memory-Based
Combination PUFs for Device Authentication in Embedded Systems.
Transactions on Multi-Scale Computing Systems, 2018.

[55] Kuniyasu Suzaki, Yohei Hori, Kazukuni Kobara, and Mohammad Mannan.
DeviceVeil: Robust Authentication for Individual USB Devices Using
Physical Unclonable Functions. In Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2019.

[56] The Wireshark Team. Wireshark. https://www.wireshark.org/.

[57] Dave Tian, Grant Hernandez, Joseph Choi, Vanessa Frost, Peter Johnson,
and Kevin R. B. Butler. LBM: A Security Framework for Peripherals
within the Linux Kernel. In IEEE Symposium on Security and Privacy

(S&P), 2019.

[58] Dave Jing Tian, Adam Bates, and Kevin Butler. Defending Against
Malicious USB Firmware with GoodUSB. In ACM Annual Computer

Security Applications Conference (ACSAC), 2015.

[59] Dave (Jing) Tian, Nolen Scaife, Adam Bates, Kevin Butler, and Patrick
Traynor. Making USB Great Again with USBFILTER. In USENIX

Security Symposium, 2016.

[60] Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bailey, Adam Bates,
and Kevin Butler. SoK: “Plug & Pray” Today – Understanding USB
Insecurity in Versions 1 Through C. In IEEE Symposium on Security

and Privacy (S&P), 2018.

[61] Matthew Tischer, Zakir Durumeric, Sam Foster, Sunny Duan, Alec Mori,
Elie Bursztein, and Michael Bailey. Users Really Do Plug in USB Drives
They Find. In IEEE Symposium on Security and Privacy (S&P), 2016.

[62] USB-3.0-Promoter-Group. Universial Serial Bus Type-C Authentication
Specification Release 1.0 with ECN and Errata, 2017.

[63] Vadim Mikhailov. uhubctl. https://github.com/mvp/uhubctl.

[64] Yinglei Wang, Wing kei Yu, Shuo Wu, Greg Malysa, G. Edward Suh, and
Edwin Kan. Flash Memory for Ubiquitous Hardware Security Functions:
True Random Number Generation and Device Fingerprints. In IEEE

Symposium on Security and Privacy (S&P), 2012.

[65] Sarah Xu, Wing kei Yu, G. Edward Suh, and Edwin Kan. Understanding
Sources of Variations in Flash Memory for Physical Unclonable Functions.
In International Memory Workshop (IMW), 2014.

[66] Bo Yang, Yu Qin, Zhang Yingjun, Weijin Wang, and Dengguo Feng.
TMSUI: A Trust Management Scheme of USB Storage Devices for
Industrial Control Systems. In Information and Communications Security,
2016.

[67] Pete Zaitcev. The usbmon: USB Monitoring Framework, 2005.

[68] Jiexin Zhang, Alastair Beresford, and Ian Sheret. SensorID: Sensor
Calibration Fingerprinting for Smartphones. In IEEE Symposium on

Security and Privacy (S&P), 2019.

APPENDIX A

ADDITIONAL TABLES

Layer Type Kernel Size # of Filters/Neurons

1 2D Convolution (1,3) 8

2 2D Max Pool (1,2) -

3 2D Convolution (1,3) 16

4 2D Max Pool (1,2) -

5 2D Convolution (1,3) 128

6 2D Max Pool (1,2) -

7 Flatten - -

8 Dropout .1 -

9 Dense - 50

10 Dense - 50

11 Dense - 2

TABLE VI: Neural network architecture used for classification.

