
Close the Gap between Deep Learning and Mobile Intelligence
by Incorporating Training in the Loop

Cong Wang
Old Dominion University

Norfolk, VA
c1wang@odu.edu

Yanru Xiao
Old Dominion University

Norfolk, VA
yxiao002@odu.edu

Xing Gao
University of Memphis

Memphis, TN
xgao1@memphis.edu

Li Li
Chinese Academy of Science

Shenzhen, China
li.li@siat.ac.cn

Jun Wang
Futurewei Technologies

Santa Clara, CA
jun.wang2@huawei.com

ABSTRACT

Pre-trained deep learning models can be deployed on mobile
devices to conduct inference. However, they are usually not
updated thereafter. In this paper, we take a step further to
incorporate training deep neural networks on battery-powered
mobile devices and overcome the difficulties from the lack of
labeled data. We design and implement a new framework to
enlarge sample space via data paring and learn a deep metric
under the privacy, memory and computational constraints.
A case study of deep behavioral authentication is conducted.
Our experiments demonstrate accuracy over 95% on three
public datasets, a sheer 15% gain from traditional multi-class
classification with less data and robustness against brute-
force attacks with 99% success. We demonstrate the training
performance on various smartphone models, where training
100 epochs takes less than 10 mins and can be boosted
3-5 times with feature transfer. We also profile memory,
energy and computational overhead. Our results indicate
that training consumes lower energy than watching videos so
can be scheduled intermittently on mobile devices.

CCS CONCEPTS

• Human-centered computing → Mobile computing ; •
Security and privacy → Biometrics; • Computing
methodologies → Neural networks.

KEYWORDS

On-device machine learning; privacy preservation; deep met-
ric learning; behavioral authentication

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MM ’19, October 21–25, 2019, Nice, France

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3350904

ACM Reference Format:

Cong Wang, Yanru Xiao, Xing Gao, Li Li, and Jun Wang. 2019.

Close the Gap between Deep Learning and Mobile Intelligence by
Incorporating Training in the Loop. In Proceedings of the 27th
ACM International Conference on Multimedia (MM’19), Oct.

21–25, 2019, Nice, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3343031.3350904

1 INTRODUCTION

Being close to the data source, smartphone is one of the ideal
platforms for deep learning applications. Rather than query-
ing cloud servers with private data, users can compute from
a local model, hence sensitive information never leaves their
devices. By relaxing the communication requirements to the
cloud, network bandwidth and service charges can be saved.
Users thus enjoy better experience, especially in many real-
time applications such as object detection from video streams.
Early endeavors either explore new variants of applications
such as activity recognition [1, 16] and mobile vision [20, 36],
or optimize the performance with model compression [6] and
distillation [2, 9]. Their goal is to improve computational
efficiency on resource-constrained mobile devices.

Most of the existing schemes only consider inference on
mobile from a pre-trained model. Unfortunately, being able
to infer from a static model still leaves a significant gap
from being cognizant. Machine learning relies on the assump-
tions that the test samples are independently and identical-
ly drawn from the same distribution at the training time.
Deep classifiers are not good at extrapolation when the da-
ta comes from a different distribution. However, it is quite
common in mobile applications. Take behaviorial authentica-
tion [10, 17, 22, 26, 27, 35, 38] and activity recognition [1, 16]
for example, behaviorial patterns may evolve due to sickness,
injury and emotion, thus intensify the intra-class variations
and hamper classification. As a result, the model should be
re-trained or finetuned constantly to adapt to the new data
distribution. Therefore, closing the gap between deep learning
and mobile intelligence requires to bring training back into
the loop. A naive solution is to host an enclave for each client
in the cloud [30], securely aggregate training data from users,
keep all the models updated and provide downlink accessi-
bility whenever requested. This approach is obviously not

https://doi.org/10.1145/3343031.3350904
https://doi.org/10.1145/3343031.3350904

scalable for large-scale systems. Other solutions project the
sensing data into low-dimensional representations for privacy
preservation [11, 19], but at a sacrifice of accuracy.

Motivated by the latest advances in mobile processors,
in this paper, we take a step further to incorporate both
training and inference (i.e., the entire loop of learning) on
mobile devices. Specifically, we focus on the challenge to
perform learning effectively on resource-constrained mobile
devices, and the associated cost. In contrast to the cloud
environments, where large amount of labeled data has been
collected offline, a fundamental challenge on user’s mobile
is the lack of labeled data, since interactive labeling impacts
user experience. Directly learning from small data sets leads
to overfitting and degrades performance. Thus, the challenge
comes from a multi-dimensional design space considering
accuracy, privacy and performance.

This paper presents a first exploration to tackle this multi-
faceted challenge. For accuracy, we make samples into pairs
and learn a deep metric to mitigate overfitting [3, 14]. For per-
formance, we implement feature transfer to speed up training
convergence on mobile, while securing all the intermediate ac-
tivations/model parameters. We further develop a space-time
decision fusion algorithm to enhance the reliability of deci-
sions in dynamic mobile environments. The inference results
are fed back to schedule model training hence close the loop
and preserve the privacy of user data. Finally, we conduct a
comprehensive use case study of deep behavioral authenti-
cation, that takes gait modality for implicit authentication
with minimum impact on user experience.

The main contributions are: 1) we conduct both train-
ing and inference on mobile devices to preserve privacy and
learn effectively in a dynamic mobile environment. Our im-
plementation demonstrates that training is not only feasible
on mobile but also quite fast with feature transfer (within
5s/epoch on Huawei Mate10 for 400 samples); 2) we tackle po-
tential overfitting by paring data samples under the memory
constraint and learn a deep metric to enhance the discrimina-
tive power of the model. In our case study, the experiments
demonstrate 10-15% increase of authentication accuracy on
different datasets and achieve an accuracy of 0.94 on a large
dataset with 153 participants; 3) we profile performance of
different model architectures and memory/energy cost on var-
ious smartphone models. To the best of our knowledge, this
is the first work that implements both training and inference,
and addresses the associated challenges on battery-powered
mobile devices.

The rest of the paper is organized as follows. Section 2
presents the background knowledge and motivation. Section 3
describes the system design. Section 4 conducts a case study
to evaluate the framework and Section 5 concludes this work.

2 RELATED WORKS

2.1 On-Device Deep Learning

Deep learning frameworks can be exported to mobile for
inference. Yet, training consists of forward and backpropaga-
tions. The forward propagation resembles the inference except

that the intermediate gradient values are stored in memory.
In backpropagation, the prediction error is backpropagated
through the network and the model parameters are adjusted
towards minimizing a loss objective (using the gradients).
Although some works have evaluated embedded platform-
s with proprietary GPU (e.g. Nvidia Tegra series) [7, 18],
these platforms have no essential difference from the cloud
setting (Ubuntu, CUDA and external power). In contrast, we
consider battery-powered smartphones running Android with
multi-core CPUs that are thermally and electrically limited.
Since training consumes additional memory, for mobile ap-
plications, most of the existing frameworks (e.g. Tensorflow
Lite, Caffe2, MXNet1) have tailored backpropagation and
left only with the inference part to compute from pre-trained
models [34].

The previous works mainly focus on model compression
for inference [2, 5, 6, 9]. Quantization is a typical method to
compress the model, that rounds the original 32-bit floating
point parameters into the 8-bit integer with 75% model
size reduction [5]. It is desirable for inference in one-shot
computation, whereas training still requires high accuracy
especially for many security-critical applications. In [6], a pre-
trained model is pruned to have sparse connections. In [2, 9],
a shallow model is trained to learn complex functions from a
deep model. These works are useful at the deployment stage
once the model has been trained, but where and how to train
the deep model are not considered.

2.2 Behavioral Authentication

Smartphone features a variety of sensors to capture behavioral
information using acceleration, gyroscope, etc. Behavioral bio-
metrics such as gait [10, 26, 35], screen touch [38], keystroke
dynamics [22, 27] and eye movement [17] are proven to be
successful in differentiating human subjects. They reflect the
internal characteristics of a user, and are difficult to replicate.
A system process can run continuously in the background for
implicit authentication with no deliberate attention from the
user [13], which makes behavioral biometrics an ideal second
factor for authentication. Based on statistical features, the
previous works focus on using deterministic algorithms or
classifiers with less discriminative power [10, 26, 35], where-
as data outliers, abrupt changes could easily mislead these
techniques.

Convolutional Neural Networks (ConvNets) are used in [4]
to extract features from the pre-processed sensing signals to
recognize users. Similarly, a recurrent neural network is con-
structed to learn continuous motion patterns [23]. They train
a homogeneous model for all users on cloud servers. However,
user’s biometric data is private and may be improperly used
by curious cloud vendors to infer health or mental condition,
e.g. predicting Parkinson’s disease, depression from gait pat-
terns [21, 28]. Such privacy issue is tackled by training on
the mobile devices discussed next.

1Tensorflow Lite, https://bit.ly/32flUV8
Caffe2 for iOS/Android, https://bit.ly/2SGx6pP
MXNet for smart devices, https://bit.ly/2Su7axk

Figure 1: System architecture on mobile devices.

3 FRAMEWORK DESIGN

The framework is depicted in Fig. 1: ❶ It takes raw sensor
inputs, transforms them into mid-level representations (spec-
trograms [8]). The benefit of this transformation is evaluated
in Section 4.2.1; ❷ processes the representations with the
neural network; ❸ computes a distance metric from the fea-
ture vectors; ❹ generates a decision; ❺ backpropagates the
error if training is scheduled.

3.1 Deep Metric Learning

Although sensing data is abundant on smartphone, labeling
requires external efforts and bootstrapping time from the
user. Existing approaches of multi-class classification typically
use the softmax function to output a probability for each
predicted class. For a total of 𝑘 classes and 𝑛 samples in each
class, it learns from the 𝒪(𝑘𝑛) samples. When 𝑛 is small, the
model is subject to overfitting with softmax. A solution is to
pair the samples and learn a similarity distance metric using
the siamese network [3, 14]. This way, the input is expanded
by a factor of 𝑘𝑛. As shown in Fig. 1, it incorporates two
branches of identical ConvNets that share model weights.
They take a series of convolution, nonlinear activation and
downsampling to yield feature vectors 𝜙1, 𝜙2, and merge into
a top network to learn a distance metric function 𝑓(𝜙1, 𝜙2).
It is constructed with the contrastive loss function to map
feature vectors to a space in which similar samples have closer
distance whereas dissimilar samples are far apart (separated
by a margin). For a pair 𝑖, 𝑗 of dataset 𝒟, the contrastive
loss function is defined as,

ℒ𝑐 =
∑︁

𝑖,𝑗∈𝒟
𝑦(𝜙

(𝑖)
1 , 𝜙

(𝑗)
2)𝑓(𝜙

(𝑖)
1 , 𝜙

(𝑗)
2)2 +

(1− 𝑦(𝜙
(𝑖)
1 , 𝜙

(𝑗)
2))max(𝑚− 𝑓(𝜙

(𝑖)
1 , 𝜙

(𝑗)
2), 0)2, (1)

in which label 𝑦(𝜙
(𝑖)
1 , 𝜙

(𝑗)
2) = 0 for dissimilar pairs and

𝑦(𝜙
(𝑖)
1 , 𝜙

(𝑗)
2) = 1 for similar pairs. 𝑚 is the margin. If the pair

is similar (positive), the loss is 𝑓(𝜙
(𝑖)
1 , 𝜙

(𝑗)
2)2; if the pair is

dissimilar (negative), the loss is max(𝑚− 𝑓(𝜙1, 𝜙2))
2. When

𝑓(𝜙1, 𝜙2) > 𝑚, the loss is zero, i.e., dissimilar pair with dis-
tance larger than the margin has zero loss. A slightly different
loss function is proposed in [14], that does not require the
margin parameter. We evaluate both functions in Section 4.

Memory-efficient Sampling. Training takes batched
input in memory sampled from flash storage. To avoid the
latency accessing the storage, the system maintains a pool
of sampled pairs in memory. This makes sampling crucial

Algorithm 1: Memory-efficient Sampling

1 Input: 𝑟2 positive and 𝑛𝑠𝑟𝑠 negative pairs, memory bound 2𝑅.

2 Output: a balanced set of samples of size 2𝑅.

3 Set of all negative pairs 𝒩 , 𝑅 = 𝑟2, |𝒩 |= 𝑛𝑠𝑟𝑠.

4 for 𝑇 ← 1, · · · , 𝑅 do
5 ℛ ← ℛ+ (𝑖 ∈ 𝒩).

6 for 𝑇 ← 𝑅 + 1, · · · , 𝑛𝑠𝑟𝑠 do
7 if probability 𝑝 > 𝑅

𝑇 then
8 ℛ ← ℛ− (𝑖 ∈ ℛ) + (𝑖 ∈ 𝒩).

because of data balance and increased memory footprint. Con-
sider authentication as an extreme case, where the number of
negative samples is much larger than the positive ones (from
the device owner). Denote variables of 𝑛𝑠 negative classes of
𝑠 samples (supplied by the cloud as discussed next). For the
mobile user with 𝑟 samples, there are 𝑟2 positive pairs and
the 𝑛𝑠𝑟𝑠 negative pairs (𝑛𝑠𝑟𝑠 ≫ 𝑟2). Since loading all the
negative pairs into memory may lead to memory leaks, the
goal is to keep a random subset of negative samples within
memory limits.

We develop a balanced reservoir sampling algorithm. A
buffer size of 2𝑅 is found from hardware configuration or
test (half for positive and half for negative pairs). The size
determines a trade-off between memory usage and variety of
negative records. Small 𝑅 could lead to severe overfitting and
large 𝑅 risks of having memory error. To maximize coverage,
we set 𝑅 = 𝑟2 so all positive samples are utilized for training
and make sure that the total size of 2𝑅 is within the memory
capacity. The algorithm continuously adds record into the
reservoir till the (𝑇 + 1)-th record, 𝑇 = 𝑅. If 𝑇 > 𝑅, a
random pair in the reservoir is replaced with probability 𝑅

𝑇

or rejected with probability 1− 𝑅
𝑇
. After the sequential pass

through all the records, the buffer forms a random set from
the pool of negative samples.

3.2 Decision Fusion and Feedback

After the model is trained, the inference module takes in-
put from sensors and outputs a classification decision. The
decision based on a single shot of inference is not reliable be-
cause interference, outliers, and behavioral instability persist
at run-time. The goal is to reach a high confidence within
minimum observation time. We build an algorithm on top
of the inference module to fuse multiple inferences across
spatial and temporal axes. For data 𝑥𝑖 at time 𝑖, we first
perform spatial selections from the training samples. 𝑥𝑖 is
paired with 𝑘 samples randomly selected from the training
set on mobile, since one training sample is not sufficiently
representative. The mean distance 𝑑𝑖 from 𝑘 random samples
𝑑𝑖 =

∑︀𝑘
𝑗=1 𝑑(𝑥𝑗 , 𝑥𝑖)/𝑘 is computed.

Not only could the selection of training samples have
imperfections, the incoming data may also have disturbances.
After the spatial evaluation, we progress along the time
dimension to fuse multiple decisions {𝑦1, 𝑦2, · · · , 𝑦𝑛}. After
the 𝑖-th evaluation, it either decides to accept (𝐻0), reject
(𝐻1) or continue to observe 𝑦𝑛+1. The module defines two
kinds of errors: false negative 𝛼 and false positive 𝛽. The

objective is to minimize the expected time of evaluation and
satisfy the error constraints, which is formulated as Sequential
Probability Ratio Test (SPRT) [32]. SPRT progresses by
assessing a likelihood ratio 𝜆𝑛 for the 𝑛-th observation,

𝜆𝑛 =
𝑝(𝑦1, · · · , 𝑦𝑛|𝐻1)

𝑝(𝑦1, · · · , 𝑦𝑛|𝐻0)
=

𝑛∏︁
𝑖=1

𝑝(𝑦𝑖|𝐻1)

𝑝(𝑦𝑖|𝐻0)
. (2)

The second equality holds because samples are independently
randomly drawn. We extend SPRT for the distance metric
(contrastive loss). Pairs with distance less than the margin
threshold (typically set to 𝑚/2) are considered as similar;
otherwise, they are dissimilar. We use a normal distribution
to model the distance into probability distribution,

𝑝(𝑑𝑖|𝜇, 𝜎2) = 1− 𝜑(
𝑑𝑖 − 𝜇

𝜎2
), (3)

in which (𝜇, 𝜎2) is set to (𝑚
2
, 0.25) in the experiment. Distance

around 0 or margin 𝑚 has high probability being similar or
dissimilar, and lower probability around 𝑚

2
when the classifier

is unsure. Combining (2) and (3), the ratio is,

𝑝(𝑦𝑖 = 0|𝐻1)

𝑝(𝑦𝑖 = 0|𝐻0)
= 𝜑(

𝑑𝑖 − 𝜇

𝜎2
)/
(︀
1− 𝜑(

𝑑𝑖 − 𝜇

𝜎2
)
)︀

(4)

𝑝(𝑦𝑖 = 1|𝐻1)

𝑝(𝑦𝑖 = 1|𝐻0)
=

(︀
1− 𝜑(

𝑑𝑖 − 𝜇

𝜎2
)
)︀
/𝜑(

𝑑𝑖 − 𝜇

𝜎2
) (5)

The strategy is proven to be optimal if the following decision
is made,

𝑆*
𝑛 =

⎧⎨⎩
𝐻0, 𝜆𝑛 ≤ 𝐵
𝐻1, 𝜆𝑛 ≥ 𝐴

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒,𝐵 < 𝜆𝑛 < 𝐴

(6)

We set the two thresholds 𝐴 and 𝐵 suggested by [32], 𝐴 =
(1 − 𝛽)/𝛼, 𝐵 = 𝛽/(1 − 𝛼). The sequence moves within the
open interval (𝐵,𝐴) till a decision is made. Intuitively, if
consecutive decisions of acceptance are made, the likelihood
ratio shrinks multiplicatively. Any rejection along the way
would drive the ratio to an opposite direction towards the
upper threshold until a threshold is met. The decision of 𝑆*

𝑛

is examined closely to schedule training.
Feedback. We examine the testing accuracy as a feedback

to schedule model re-training to adapt variations. Again, take
authentication as an example, if the decision outputs a false
negative, the screen is mistakenly locked by the (second-
factor) behavioral authentication, but the user later logins
with her face or fingerprint (that verifies the decision is indeed
a false negative). If such situations exceed a certain number,
it indicates that the user’s behavior may have undergone
a substantial change and training is scheduled with a mix
from the new data. Incorporating training on mobile could
immediately respond to these shifts thereby closing the loop
of learning on mobile devices. The scheme is summarized in
Algorithm 2 and evaluated in Section 4.2.6.

4 USE CASE STUDY OF BEHAVIORAL
AUTHENTICATION

To evaluate the framework, we conduct a case study of be-
havioral authentication using gait (walking) data collected
by the accelerometer sensors [10, 26, 35]. The primary goal
of the evaluation is to defend random attackers who may use

Algorithm 2: Decision Fusion and Feedback

1 Input: Testing pairs (𝑥𝑗 , 𝑥𝑖), 1 ≤ 𝑗 ≤ 𝑘. 𝑘 pairs randomly drawn
from training set. False negative 𝛼 and false positive 𝛽, threshold
𝐴 = (1− 𝛽)/𝛼, 𝐵 = 𝛽/(1− 𝛼).

2 Output: Decision 𝑆*
𝑛 and training schedules.

3 Initialize false negative counter 𝑐← 0, and threshold 𝑇 .

4 while 𝑐 < 𝑇 do
5 𝑛← 0

6 while 𝐵 < 𝜆𝑛 < 𝐴 do

7 𝑑𝑖 ←
∑︀𝑘

𝑗=1 𝑑(𝑥𝑗 , 𝑥𝑖)/𝑘, 𝑝(𝑑𝑖|𝜇, 𝜎2)← 1− 𝜑(
𝑑𝑖−𝜇

𝜎2).

8 𝜆𝑛 ←
∏︀𝑛

𝑖=1
𝑝(𝑑𝑖|𝐻1)

𝑝(𝑑𝑖|𝐻0)
.

9 if 𝜆𝑛 ≥ 𝐵 then
10 𝑆*

𝑛 ← 1 and Break.

11 if 𝜆𝑛 ≤ 𝐴 then
12 𝑆*

𝑛 ← 0 and Break.

13 𝑛← 𝑛 + 1

14 Output optimal decision 𝑆*
𝑛.

15 if Given true label 𝐻0, 𝑆*
𝑛 = 𝐻1. then

16 𝑐← 𝑐 + 1

17 Schedule training ofℳ𝑡 with new data 𝒟𝑡.

their own data or samples from a large database to spoof the
authentication system. This case is common since a random
attacker may obtain a device lost by the victim. Without any
prior knowledge on the behavioral pattern, he can retrieve
data from a large public database and launch brute-force
attacks to unlock the device. Meanwhile, the classifier should
be able to recognize the device owner across various sessions
though behavioral patterns may change significantly.

4.1 Model and Mobile Development

We convert the tri-axial accelerometer signal into spectro-
grams [8] and stack them vertically. Spectrogram encodes
the time serial data into 2D images of time-frequency rep-
resentation. This way, learning can be performed effectively
using convolutional neural networks2.We evaluate three mod-
el architectures extended from LeNet [15], VGG [31] and
MobileNetv2 [29] by adding or pruning layers to yield similar
input dimension at the dense layer as their original implemen-
tations. We develop the system on a Java-based framework
called DL4J 3 and enable SIMD to use multi-core CPUs. Dur-
ing testing, we notice that deeper structures could cause
OutOfMemoryError due to a large number of parameters
and batched data processing. To mitigate, we set largeHeap
to give the application a 512 MB heap capacity and select a
sampling buffer size less than this value.

4.2 Experiments

The main goals of the experiments are: 1) investigate the
accuracy and computational cost of different models and
approaches; 2) examine cost savings and performance im-
pact from feature transfer; 3) validate system robustness
against intra-class variations and random attacks; 4) profile
performance and overhead on various smartphone models.

2Though an option is to use the recurrent neural networks, their
computation intensity are much higher on the mobile devices.
3Deep Learning for Java, https://deeplearning4j.org

baseline siamese multi-class siamese binary-class (20% data)

softmax(sw) softmax(spgm) osvm contrastive cross-entropy contrastive cross-entropy

M
cg

il
l LeNet4 0.774 0.881 0.542 0.918 0.940 0.966 0.934

VGG8 0.752 0.902 0.672 0.925 0.952 0.962 0.906
MobileNetv2 0.682 0.811 0.581 0.865 0.926 0.847 0.901

ID
N
et

LeNet4 0.726 0.842 0.552 0.884 0.903 0.937 0.899

VGG8 0.764 0.875 0.561 0.916 0.908 0.934 0.901

MobileNetv2 0.770 0.776 0.591 0.876 0.912 0.910 0.921

Z
J
U

LeNet4 0.442 0.646 0.511 0.681 0.804 0.941 0.926
VGG8 0.463 0.743 0.523 0.769 0.841 0.936 0.851

MobileNetv2 0.591 0.471 0.510 0.706 0.778 0.895 0.835

Table 1: Model accuracy of different loss functions and network architectures

-60 -40 -20 0 20 40 60
Dimension 1

-60

-40

-20

0

20

40

60

D
im

en
si

on
 2

Visualization of features - softmax multi-class

(a)

-50 0 50
Dimension 1

-50

0

50

D
im

en
si

on
 2

Visualization of features - siamese multi-class

(b)

Figure 2: Softmax vs. siamese classification via t-
SNE visualizations (a) softmax; (b) siamese.

Datasets. To make the benchmarks comparable, the ex-
periments are based on public datasets: Mcgill [12], IDNet [4],
ZJU [37] and Osaka [24] gait datasets. With a total coverage
of around 1,000 individuals, we believe the four datasets
are sufficient to validate the system in various scenarios. In
particular, Mcgill includes 15-min walk of 20 people. IDNet
is collected with different types of phones and dresses from
50 people. ZJU contains 153 individuals in 3 sessions with 5
body sensors. Osaka records 1-minute walk of 744 subjects.
Due to short recordings (only 1-2 spectrograms), we cannot
perform meaningful training even with sample paring so it is
utilized as a large database from which attackers may launch
random attacks.

The datasets are split into 80% for training and 20% for
testing. The test set is generated by randomly pairing training
samples with testing samples. This simulates the run-time
when new motion data is evaluated against training samples
as the ground truths captured during the bootstrap phase.
To assess the performance of authentication, we mainly focus
on the mean Average Precision (mAP), which is the average
percentage of true authentication over the total number of
testing. We set the margin 𝑚 = 1.5 in the contrastive loss
(Eq. (1)). For fast prototyping, we first develop the model and
evaluate authentication accuracy, security and performance
in Tensorflow with Nvidia Tesla P100 GPU, and then develop
the learning module on Nexus 6/6P, Huawei Mate 10 and
Google Pixel2 using DL4J. During our testing, we find that
the maximum batch size for Nexus 6 (oldest phone in our
test) is 56 (pairs). To test various models and avoid memory
errors, we set the batch size to 20 on mobile.

4.2.1 Accuracy. We first evaluate authentication accuracy,
compare models, data representation and learning mecha-
nisms on different datasets and examine the gap between
multi-class and binary classifications (Table 1). First, we
show that data representation has a significant impact on
accuracy. Existing research mainly works in the time-domain
to extract cycle [4] or segment temporal signals [25]. The first
two columns of the table compares spectrogram representa-
tion with sliding window (SW) on the temporal signal [25].
Spectrogram achieves a significant accuracy gain of over 10%.
A one-class SVM (osvm) is used in [4] to detect outliers from
imposters. Our experiments show that, although osvm can
handle 80-90% outliers, it fails to generalize to the positive
samples, which results in high rate of false rejections.

The siamese network can be used for both multi-class and
binary classifications. Multi-class classification requires all
the pairs between different classes to be labeled [4, 23] where-
as binary only labels one vs. the rest. To simulate limited
mobile storage, only 20% data from the training set is used
for binary classification but tested on the entire test set. This
is challenging for recognition since the ConvNet can only
“see” from a small subset of training data. A model is trained
for each individual in the dataset and the results are aver-
aged. First, it is observed that the siamese network improves
accuracy significantly. Compared (column 4/5) to softmax
(column 2), multi-class siamese offers 8-15% accuracy gain.
We visualize the features learned by softmax and siamese
(contrastive loss) in Fig. 2(a) and (b), where the colors repre-
sent the feature vectors of different subjects in 2D. Features
learned by softmax are not sufficiently discriminative where
the distance along the feature vectors from the same individu-
al could be similar to a different individual. We further notice
that some features belong to different individuals are mapped
to the same vector space in 2D. These findings are in line
with [33] (softmax tends to underperform). Contrastive loss
from the siamese network offers improvements by mapping
feature activations into a condensed, compact set of spaces.
This shows the higher discriminative power of deep metric
learning than softmax especially with less training data.

However, accuracy still declines a little with an increasing
number of classes (e.g. from 0.952 of Mcgill with 20 people
down to 0.841 of ZJU with 136 people). This problem is
tackled by only doing binary classification, which is quite

reasonable on mobile. As observed, the accuracy stays above
90%. We also notice some interesting phenomenon that the
cross-entropy loss is better than the contrastive loss for multi-
class classification, but the opposite for binary classification.
The difference between them is that the cross-entropy gen-
erates a probabilistic decision, rather than a deterministic
distance metric from the contrastive loss. In our experiment,
we discover that contrastive loss is more prone to error during
multi-class classification in the presence of hard samples. Due
to space limit, we plan to conduct more experiments in our
future work. Finally, we further alter the model into VGG8
and MobileNetv2. VGG8 achieves the best accuracy in most
cases. With 40% less parameters, MobileNetv2 suffers 8-26%
accuracy loss compared to LeNet4.

4.2.2 Resource Requirement. Fig. 3 illustrates the relation-
s between model parameters, floating point operations
(FLOPS), and accuracy. We alter the structures by shrink-
ing/expanding filter size, numbers, and adding/removing
convolutional or pooling layers. For the same model, in gen-
eral, more parameters bring higher representational power
at the risk of overfitting and cost of computation. From
Fig. 3(a), VGG8 is more stable than others in terms of ac-
curacy. Once the number of parameters exceeds a million,
the models tend to overfit. Mobilenetv2 can be tailored to
only weigh half of LeNet4, but the performance is not stable.
Fig. 3(b) also indicates that it incurs nontrivial GPU time
if the FLOPS increase. Fig. 3(c) shows that LeNet4/VGG8
are more competitive than Mobilenetv2 for the datasets in
terms of computation time and accuracy.

To facilitate mobile development, we conduct the following
experiments using LeNet4 and keep the consistency through
the rest of the experiments. Fig. 3(d) shows the training
time per epoch on mobile devices. We plot in 3D for better
visualization of the impact from the convolutional and dense
layer. Training on mobile devices is not only feasible, but
actually much faster than expected. For a deep model with
650K parameters and 400 samples, it only takes the latest
Pixel2 or Mate10 less than 5 seconds to complete one training
epoch. Thus, training 100 epochs takes less than 10 mins.
Even the old Nexus 6 finishes around 10 seconds per epoch.

feature transfer Mcgill IDNet ZJU gain/loss

M
cg

il
l fconv1-3 0.933 0.903 0.907 -5.2%

fconv1-2 0.948 0.927 0.918 -3.5%
fconv1 0.953 0.941 0.948 -1.9%

gain/loss -2.1% -4.2% -4.2% –

ID
N
et

fconv1-3 0.876 0.941 0.896 -3.3%

fconv1-2 0.922 0.951 0.911 -0.9%
fconv1 0.933 0.957 0.936 +0.5%

gain/loss -2.7% +1.3% -2.3% –

Z
J
U

fconv1-3 0.808 0.810 0.829 -12.5%

fconv1-2 0.836 0.818 0.833 -11.3%
fconv1 0.832 0.804 0.847 -11.3%

gain/loss -11.6% -13.0% -10.5% –

Table 2: Accuracy with feature transfer

During the experiment, we notice that the speed bottleneck
of convolutional layers is magnified on mobile devices due to
less processing power from the mobile CPUs and memory. As
observed in Fig. 3(d), with more convolutional layers, training
time surges sharply. However, increasing computations of the
dense layer has less impact on performance. Interestingly,
we are even able to train some networks with over a million
parameters, as long as most of the parameters reside in the
dense layer. Equipped with the capability to learn, model
updates can be scheduled efficiently without external efforts
from service providers.

4.2.3 Speed up on Mobile by Feature Transfer. Since convo-
lutional layers learn common features, these features can be
efficiently transferred from the cloud for computation efficien-
cy. To see such potential, the following cases are evaluated:
1) freeze all convolutional layer weights (fconv1-3); 2) freeze
first two convolutional layer weights (fconv1-2); 3) freeze
the first convolutional layer weights (fconv1). We train the
rest of the layers. The source model conducts multi-class
classification on the dataset (public) without the presence of
the target user (private). At the target user, it performs the
binary classification based on the weights transferred from
the source model. Note that this implementation is robust
against privacy exploits since the private activations are kept
on mobile and the transferred features are public. We also
evaluate scenarios when different public data are available, by
alternating the source data between the other two datasets.
This allows us to examine the generality of features and their
impact on accuracy and convergence. If the source and target
models permits easy domain adaptations, the cloud no longer
needs to tightly match the hardware configuration with the
user device.

Fig. 4(a) shows the convergence of a random individual
from the Mcgill dataset. We can see that feature transfer
offers at least two orders of magnitude speed-up in terms
of convergence. Features learned from data gathered with
different settings offer significant boost as well. For instance,
for the loss value to converge to 0.05, the original training
takes 325 epochs. With feature transfer, it only takes 2 epochs
from the same dataset, 5 and 4 epochs for different IDNet and
ZJU datasets, respectively. We then evaluate the speed-up on
mobile devices and measure the total computation time to

0 100 200 300 400 500
Training epoch

10-5

10-4

10-3

10-2

10-1

100

101

Lo
ss

Convergence on Mcgill Dataset

Train all layers
Freeze Conv1-3/Mcgill
Freeze Conv1-2/Mcgill
Freeze Conv1/Mcgill
Freeze Conv1/IDNet
Freeze Conv1/ZJU

transferred from
different data

transferred from
the same data

Speed-up from feature transfer on mobile devices

Nexus 6 Nexus 6P Mate 10 Pixel 2
0

50

100

150

200

250

T
im

e
(s

)

train all
fconv1
fconv1-2
fconv1-3

5.46x

3.16x

5.43x

4.2x

speed-up

(a) (b)

Figure 4: Boost from feature transfer (a) speed of
convergence; (b) speed-up on mobile devices.

0 500 1000 1500 2000
of parameters (K)

60

65

70

75

80

85

90

95

100

m
A

P
 (

%
)

mAP vs. # of parameters for different models

LeNet
VGG
MobileNetv2

(a)

0 1000 2000 3000 4000
FLOPS (K)

0

50

100

150

200

250

300

350

400

G
P

U
 T

im
e

(s
)

FLOPS vs. GPU Time

LeNet
VGG
MobileNetv2

(b)

0 100 200 300 400
GPU Time (s)

60

65

70

75

80

85

90

95

100

m
A

P
 (

%
)

GPU Time vs. mAP (%)

LeNet
VGG
MobileNetv2

(c)

1500

1000

#Param. of
 Dense Layer (K)

Training time on Mobile CPUs

0
150

5

500

#Param. of Conv Layer (K)

10

100

T
im

e
pe

r
ep

oc
h

(s
)

15

50 0

20

0

Nexus 6
Nexus 6P
Mate10
Pixel2

(d)

Figure 3: Evaluation of resource requirement vs. accuracy on GPU and mobile platforms using IDNet (a)
mAP vs. parameters; (b) FLOPS vs. GPU time; (c) GPU time vs. mAP; (d) Parameters (Conv and Dense
Layers) vs. Mobile CPU Time.

finish 50 epochs of training, as shown in Fig. 4(b). Freezing
all the convolutional layers offers 3-5 times of speed-up. If
one additional convolutional layer is released, the gain is still
over 2 times. The speed-up comes with a little accuracy loss
due to the discrepancy among domain features (illustrated in
Table 2). Training the dense layers only has 3-5% accuracy
loss on Mcgill, IDNet, and 12% on ZJU dataset. The accuracy
can be improved by fine-tuning more layers (e.g. to 0.9% and
3.5% for Mcgill and IDNet). Transferring from a different
dataset only incurs minor accuracy loss (1-3% on average).
This indicates that the proposed architecture is robust to re-
use features for the new target domain, though device settings
such as sampling frequency (sensors) can be different.

4.2.4 Robustness against Intra-class Variations. We show that
scheduled training can adapt to intra-class variation when
behavioral biometrics evolve. We utilize Mcgill and ZJU
datasets since they record more than two sessions of a subject
on different days (Mcgill) and months (ZJU). To see whether
the system can still recognize its owner, we examine the
acceptance rate. If the acceptance rate is low, the model
is likely to reject the genuine user and degrade usability
significantly. In the upper figures (no training) of Fig. 5, each
user trains a model in session 1 and directly tests on the
data from session 2. As we observe, the acceptance rate is
quite low if the model is not updated. Mcgill dataset across
several days only yields 16.3% average acceptance, and the
rate drops to 1.1% for ZJU over a longer period. It certainly
indicates that pre-trained models cannot adapt to new data
distributions.

With continuous model updates, we fine-tune the model
from the previous weights with a lower learning rate, and
only use 20% of the new data. The bottom figures in Fig. 5
shows the mean acceptance percentage over all fine-tuning
epochs, which quickly brings it back to 92.4% and 77.6% for
Mcgill and ZJU, respectively. The best acceptance percentage
of some users can hit 100% indicating that the fine-tuned
model can almost perfectly adapt to the new data.

4.2.5 Robustness against Random Attacks. A random attack-
er tries to gain system access using his own walking data (gait)
or data retrieved from a large database. Since behavioral pat-
terns are extremely difficult to mimic by observation, we use
Osaka as the database to launch attacks. These samples are

Accuracy cross different sessions - no training

0 5 10 15 20
Subjects # (Mcgill)

0

50

100

m
A

P
 (

%
)

Accuracy cross different sessions - re-training (20% data)

0 5 10 15 20
Subjects # (Mcgill)

0

50

100

m
A

P
 (

%
)

Accuracy across different sessions - no training

0 50 100
Subjects # (ZJU)

0

50

100

m
A

P
 (

%
)

Accuracy across different sessions - retraining (20% data)

0 50 100
Subjects # (ZJU)

0

50

100

m
A

P
 (

%
)

(a) (b)

Figure 5: Acceptance rate across different sessions
(a) Mcgill; (b) ZJU.

Dataset All Batch 4 Batch 8 Batch 16 Batch 32

Mcgill 0.05% 0.003% 0.003% 0.000% 0.000%
IDNet 2.36% 2.18% 2.014% 1.682% 1.024%

ZJU 0.346% 0.028% 0.010% 0.004% 0.001%

Table 3: Success ratio of passive attacks using Osaka
dataset

entirely new to the model from unknown data distributions.
We train users in the three datasets and enumerate through
all the attacking samples (1684 spectrograms) for each user.
As shown in Table 3, the success ratio is below 3%. Once the
results are fused with 32 samples randomly selected from the
training data, the ratio further declines to 1% in the worst
case. This rate could be easily reduced to zero by incorpo-
rating high-level security mechanisms such as limiting the
number of trials.

4.2.6 Inference on Mobile Devices. Fig. 6(a) shows time du-
rations of making batched inference on mobile devices (from
4-56). Since less parallel resources are available on the mobile
platform, the inference time increases almost linearly with
the input batch size. The computation takes less than 1.5s for
all the devices. Table 3 indicates that a batch of 32 samples
is robust against random attacks. It takes less than 0.5s on
Pixel2/Mate10 and 1s on Nexus 6/6P. If a single batch is not
reliable, the system progresses to temporal decision fusion as
described in Section 3.2. Fig. 6(b) demonstrates the decision-
making process. We set the false rejection/acceptance re-
quirements to 𝛼 = 𝛽 = 0.01. When the likelihood ratio hits
the upper shaded area, the decision is to reject; otherwise,

10 20 30 40 50
Inference batch size (pairs)

0

0.5

1

1.5

T
im

e
(s

)

Inference time on mobile devices

Nexus 6
Nexus 6P
Mate10
Pixel2

(a)

0 10 20 30 40 50
Iterations

10-3

10-2

10-1

100

101

102

103

Li
ke

lih
oo

d
R

at
io

 (
lo

g
sc

al
e)

Evolution of SPRT for positive examples

Accept (True/18 iter.)
Reject (False/15 iter.)
Accept (True/6 iter)
Accept (True/44 iter)

Reject Area

most cases

Accept Area

(b)

Figure 6: Inference on mobile (a) batched inference
time on mobile; (b) process of decision fusion;

0 20 40 60 80 100 120
Time (s)

100

150

200

250

300

350

400

450

M
em

or
y

(M
B

)

20

40

60

80

100

120

140

160

of

 A
llo

ca
te

d
O

bj
ec

ts
 (

K
)

Trace of Memory/Object Allocation (Nexus 6)
memory
java object

Garbage Collection

0 10 20 30 40 50 60
Time (s)

250

300

350

400

450

M
em

or
y

(M
B

)

120

140

160

180

200

220

of

 A
llo

ca
te

d
O

bj
ec

ts
 (

K
)

Trace of Memory/Object Allocation (Pixel 2)

memory
java object

Garbage Collection

(a) (b)

Figure 7: Trace of memory/object allocation during
mobile training (a) Nexus 6; (b) Pixel 2.

the decision is to accept. Normally, 5-6 batch iterations are
needed to reach a confident decision. This takes about 6s and
1.5s on Nexus 6/6P and Pixel2/Mate10 respectively. To see
the evolution, we select some hard samples and mix them
with random samples. The classifier is less confident based
on the single batch and it progresses to the next iteration
until a shaded region is hit. The process can be thought as a
competition between the decisions to either accept or reject.
If a majority of the new data indicates positive, the decision
is inclined to accept though a few false ones may drag the
curve towards the opposite direction en-route. As we can see,
decision fusion reduces prediction instability at a little cost
of extended response time.

0 40 80 120 160

Time (s)

0

1000

2000

3000

4000

5000

B
at

te
ry

 P
ow

er
 (

m
W

)

Profile and compare battery power of applications

Training
Angry Bird
Video
Idle

0 40 80 120 160
Time (s)

0

0.5

1

1.5

2

2.5

3

C
P

U
 F

re
q.

 (
G

H
z)

Profile and compare CPU Frequency of applications
Training
Angry Bird
Video
Idle

(a) (b)

Figure 8: Profiling battery power and CPU frequen-
cy of different applications

4.2.7 Profile System Overhead. Memory. We use the Android
Profiler to measure the memory consumption of the app dur-
ing training in Fig. 7. To save space, we show the traces of

Nexus 6 and Pixel 2 (the oldest and newest of our collection).
Nexus 6 has a quad-core of 4× 2.7 GHz. Pixel 2 features an
octa-core with 4× 2.35 GHz plus 4× 1.9 GHz CPUs. Once
the app starts, it loads the native code, training samples
and ConvNet model into the mobile memory. Sample paring
is conducted on the device at the beginning. Since DL4J is
not optimized for the mobile environment, the native/code
occupies about 130 MB. When training is initiated, new ob-
jects are allocated and once the app approaches the assigned
memory limit, a garbage collection is triggered to release the
objects, which could pause the app for a minimum amount of
time (several ms). When multi-threads are enabled in DL4J
with OpenBLAS, the training process enjoys much better
performance with an octa-core processor on Pixel 2. Hence,
we see a steeper line of object allocation on Pixel2, which
completes the training by only half of the time with Nexus 6.

Battery Power and CPU Frequency. We profile the battery
power using the Monsoon power monitor4 and CPU frequency
by the Trepn Profiler5. We measure the battery power and
average CPU frequency of the 4 cores on Nexus 6 while (1)
training, (2) playing angry bird, (3) watching an MP4 video in
MX player, and (4) idling, in Fig. 8. Training runs at 2.0 GHz
set by the default governor and its battery power consumes
at the level of 2000 mW, which consumes about 1% total
battery during 2.5 mins. Training introduces an additional
28% energy overhead compared to angry bird, but consumes
25% less energy compared to watching a video. The results
suggest that training consumes more energy than mobile
games but less intensive than watching videos. Since model
update is less time-sensitive compared to interactive apps,
it can be delegated as a background service and scheduled
on-demand while the phone is charging or idling. The default
CPU governor can be also adjusted adaptively to optimize
performance and power consumption.

5 CONCLUSION

This paper incorporates training on mobile devices and tack-
les the challenges from privacy, accuracy and performance.
A comprehensive framework is designed to optimize training,
inference to mitigate overfitting. The system is evaluated
with a use case study of deep behavioral authentication and
our extensive experiments demonstrate the security and ro-
bustness of the proposed design against intra-class variations
and imposters that are out-of-distributions. We anticipate
the presented system would offer insights and opportunities
to enhance deep learning on mobile devices.

6 ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science
Foundation under grant number CCF-1850045.

4Monsoon power monitor, https://www.msoon.com/
5Trepn Power Profiler, https://developer.qualcomm.com/software/trepn-
power-profiler

REFERENCES
[1] M. A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, and H. Tan.

2016. Deep activity recognition models with triaxial accelerome-
ters. In AAAI Conference on Artificial Intelligence.

[2] J. Ba and R. Caruana. 2014. Do Deep Nets Really Need to be
Deep? In Advances in Neural Information Processing Systems
27.

[3] S. Chopra, R. Hadsell, and Y. LeCun. 2005. Learning a similarity
metric discriminatively, with application to face verification. In
2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), Vol. 1. 539–546 vol. 1.

[4] M. Gadaleta and R. Michele. 2018. IDNet: Smartphone-based
gait recognition with convolutional neural networks. Pattern
Recognition 74 (2018), 25–37.

[5] Google. 2019. Low precision GEMM library. https://github.
com/google/gemmlowp

[6] S. Han, H. Mao, and W. Dally. 2016. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and huffman coding. International Conference on Learning
Representations (2016).

[7] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A.
Krishnamurthy. 2016. MCDNN: An Approximation-Based Exe-
cution Framework for Deep Stream Processing Under Resource
Constraints. In Proceedings of the 14th Annual Internation-
al Conference on Mobile Systems, Applications, and Services
(MobiSys ’16).

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A.
Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury.
2012. Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups. IEEE
Signal Processing Magazine 29, 6 (Nov 2012), 82–97.

[9] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 (2015).

[10] T. Hoang and D. Choi. 2014. Secure and privacy enhanced gait
authentication on smart phone. The Scientific World Journal
(2014).

[11] L. Jiang, R. Tan, X. Lou, and G. Lin. 2019. On Lightweight
Privacy-preserving Collaborative Learning for Internet-of-things
Objects. In Proceedings of the International Conference on In-
ternet of Things Design and Implementation (IoTDI ’19).

[12] Frank Jordan. 2019. McGill Dataset. https://www.cs.mcgill.ca/
∼jfrank8/data/gait-dataset.html

[13] H. Khan, A. Atwater, and U. Hengartner. 2014. Itus: An Implicit
Authentication Framework for Android. In Proceedings of the
20th Annual International Conference on Mobile Computing
and Networking (MobiCom ’14).

[14] G. Koch, R. Zemel, and R. Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML deep learning
workshop, Vol. 2.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86,
11 (Nov 1998), 2278–2324.

[16] X. Li, Y. Zhang, I Marsic, A. Sarcevic, and R. Burd. 2016. Deep
Learning for RFID-Based Activity Recognition. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor
Systems (SenSys ’16).

[17] D. Liu, B. Dong, X. Gao, and H. Wang. 2015. Exploiting Eye
Tracking for Smartphone Authentication. In Applied Cryptogra-
phy and Network Security.

[18] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta. 2017. Modeling
the Resource Requirements of Convolutional Neural Networks on
Mobile Devices. In Proceedings of the 25th ACM International
Conference on Multimedia (MM ’17).

[19] M. Malekzadeh, R. G. Clegg, and H. Haddadi. 2018. Replacement
AutoEncoder: A Privacy-Preserving Algorithm for Sensory Data
Analysis. In 2018 IEEE/ACM Third International Conference
on Internet-of-Things Design and Implementation (IoTDI).

[20] A. Mathur, N. Lane, S. Bhattacharya, A. Boran, C. Forlivesi,
and F. Kawsar. 2017. DeepEye: Resource Efficient Local Execu-
tion of Multiple Deep Vision Models Using Wearable Commodity
Hardware. In Proceedings of the 15th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys
’17).

[21] S. Mazilu, A. Calatroni, E. Gazit, A. Mirelman, J. M. Hausdorff,
and G. Trster. 2015. Prediction of Freezing of Gait in Parkinson’s
From Physiological Wearables: An Exploratory Study. IEEE
Journal of Biomedical and Health Informatics 19, 6 (Nov 2015),

1843–1854.
[22] P. Negi, P. Sharma, V. Jain, and B. Bahmani. 2018. K-means++

vs. Behavioral Biometrics: One Loop to Rule Them All. In NDSS.
[23] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B.

Barbello, and G. Taylor. 2016. Learning Human Identity From
Motion Patterns. IEEE Access 4 (2016), 1810–1820.

[24] T. Ngo, Y. Makihara, H. Nagahara, Y. Mukaigawa, and Y. Ya-
gi. 2014. The Largest Inertial Sensor-based Gait Database and
Performance Evaluation of Gait-based Personal Authentication.
Pattern Recogn. 47, 1 (Jan. 2014), 228–237.

[25] R. Ning, C. Wang, C. Xin, J. Li, and H. Wu. 2018. DeepMag:
Sniffing Mobile Apps in Magnetic Field through Deep Convolu-
tional Neural Networks. In IEEE International Conference on
Pervasive Computing and Communications (PerCom).

[26] Y. Ren, Y. Chen, M. C. Chuah, and J. Yang. 2015. User Verifica-
tion Leveraging Gait Recognition for Smartphone Enabled Mobile
Healthcare Systems. IEEE Transactions on Mobile Computing
14, 9 (Sep. 2015), 1961–1974.

[27] J. Roth, X. Liu, and D. Metaxas. 2014. On Continuous User
Authentication via Typing Behavior. IEEE Transactions on
Image Processing 23, 10 (Oct 2014), 4611–4624.

[28] R. Saa, J. Milica, M. Nadja, and K. Vladimir. 2014. Gait charac-
teristics in patients with major depression performing cognitive
and motor tasks while walking. Psychiatry Research 217, 1 (2014),
39–46.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

[30] T. Shruti, G. Karan, S. Shweta, B. Ranjita, and R. Ramachandran.
2018. Privado: Practical and Secure DNN Inference. ArXiv
abs/1810.00602 (2018).

[31] K. Simonyan and A. Zisserman. 2014. Very deep convolution-
al networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[32] A. Wald. 1945. Sequential tests of statistical hypotheses. The
annals of mathematical statistics 16, 2 (1945), 117–186.

[33] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. 2016. A Discriminative Fea-
ture Learning Approach for Deep Face Recognition. In Computer
Vision – ECCV 2016.

[34] M. Xu, J. Liu, Y. Liu, X. Lin, Y. Liu, and X. Liu. 2019. A First
Look at Deep Learning Apps on Smartphones. In The World
Wide Web Conference (WWW ’19).

[35] W. Xu, G. Lan, Q. Lin, S. Khalifa, M. Hassan, N. Bergmann, and
W. Hu. 2019. KEH-Gait: Using Kinetic Energy Harvesting for
Gait-based User Authentication Systems. IEEE Transactions on
Mobile Computing 18, 1 (Jan 2019), 139–152.

[36] X. Zeng, K. Cao, and M. Zhang. 2017. MobileDeepPill: A Small-
Footprint Mobile Deep Learning System for Recognizing Uncon-
strained Pill Images. In Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services
(MobiSys ’17).

[37] Y. Zhang, G. Pan, K. Jia, M. Lu, Y. Wang, and Z. Wu. 2015.
Accelerometer-Based Gait Recognition by Sparse Representation
of Signature Points With Clusters. IEEE Transactions on Cy-
bernetics 45, 9 (Sep. 2015), 1864–1875.

[38] N. Zheng, K. Bai, H. Huang, and H. Wang. 2014. You Are
How You Touch: User Verification on Smartphones via Tapping
Behaviors. In 2014 IEEE 22nd International Conference on
Network Protocols.

https://github.com/google/gemmlowp
https://github.com/google/gemmlowp
https://www.cs.mcgill.ca/~jfrank8/data/gait-dataset.html
https://www.cs.mcgill.ca/~jfrank8/data/gait-dataset.html

	Abstract
	1 Introduction
	2 Related Works
	2.1 On-Device Deep Learning
	2.2 Behavioral Authentication

	3 Framework Design
	3.1 Deep Metric Learning
	3.2 Decision Fusion and Feedback

	4 Use Case Study of Behavioral Authentication
	4.1 Model and Mobile Development
	4.2 Experiments

	5 Conclusion
	6 Acknowledgments
	References

