
E-Android: A New Energy Profiling Tool for
Smartphones

Xing Gao1,2, Dachuan Liu1,2, Daiping Liu1, Haining Wang1, Angelos Stavrou3
1University of Delaware, 2College of William and Mary, 3George Mason University

{xgao, dachuan, dpliu, hnw}@udel.edu, astavrou@gmu.edu

Abstract—As the limited battery lifetime remains a major
factor restricting the applicability of a smartphone, significant
research efforts have been devoted to understand the energy
consumption in smartphones. Existing energy modeling methods
can account energy drain in a fine-grained manner and provide
well designed human-battery interfaces for users to characterize
energy usage of every app in smartphones. However, in this
paper, we demonstrate that there are still pitfalls in current
Android energy modeling approaches, leaving collateral energy
consumption unaccounted. The existence of collateral energy
consumption becomes a serious energy bug. In particular, those
energy bugs could be exploited to launch a new class of energy
attacks, which deplete battery life and sidestep the supervision of
current energy accounting. To unveil collateral energy bugs, we
propose E-Android to accurately profile energy consumption of
a smartphone in a comprehensive manner. E-Android monitors
collateral energy related events and maintains energy consump-
tion maps for relevant apps. We evaluate the effectiveness of
E-Android under six different collateral energy attacks and
two normal scenarios, and compare the results with those of
Android. While Android fails to disclose collateral energy bugs,
E-Android can accurately profile energy consumption and reveal
the existence of energy bugs with minor overhead.

I. INTRODUCTION

We have entered the era of smartphone. It is reported that, on
average, there is one smartphone for every four people on earth
[2]. A large number of apps developed for various purposes,
including business and entertainment, emerge everyday. While
smartphones have brought great convenience to our daily lives,
the service availability of smartphones is still severely restricted
by the limited battery lifetime. On one hand, the size of
smartphone limits the battery capacity. On the other hand,
various dazzling features make existing apps become energy
hogs, forcing mobile users to charge their smartphones almost
everyday. Moreover, one kind of malware targeting at depleting
the battery of smartphones was reported before [18], [22]. Such
energy malware exploits specific tricks like infinite loops and
cache misses [22] or energy bugs [27] to deplete mobile devices’
battery. Compared with other malware, energy malware usually
exhibits normal activity features, and thus it cannot be captured
by traditional dynamic or static malware analysis [18].

To provide a comprehensive view of the energy usage and
detect abnormal energy consumption, previous works center on
profiling energy consumption of each app. They track down the
power consumption of each component and build energy models
using either component utilization or different energy states.
With the help of multiple sensors on the chips, current energy
accounting could achieve high accuracy at high frequency. A
well designed battery interface is further developed to visualize

energy consumption to smartphone users. Through the battery
interface, users can clearly understand where the energy is
consumed, and take further actions such as terminating or even
deleting those energy hog apps. As a result, it is not hard
to detect existing energy malware under the combination of
energy accounting and battery interfaces.

In this paper, we uncover the existence of collateral
energy consumption and demonstrate that collateral energy
consumption, which is overlooked and unaccounted by existing
energy modeling, could cause biased energy profiling and
user confusion. We define the existence of an unaccounted
collateral energy consumption as a collateral energy bug.
Even worse, by maliciously manipulating those mechanisms
that trigger collateral energy bugs, adversaries are able to
promote new energy attack techniques. These attacks can neatly
sidestep current energy accounting and thus are undetectable
to the battery interface, leading to stealthy energy drains in
Android smartphones. The first attack vector is based on Inter-
Process Communication (IPC). As each app runs in a separate
sandbox, Android relies on IPC as the exclusive method for the
communication between apps. However, we find that existing
energy profiling approaches overlook IPC, and energy malware
can trigger other innocent apps to drain battery through the IPC
mechanism. The second attack vector is wakelock- and screen-
based. Screen is a well-known energy intensive component in
mobile devices, and wakelock is used to keep both screen and
CPU awake. However, existing energy accounting does not
track the screen energy consumption caused by background
apps, and failing to release the wakelock can drain tremendous
amount of energy. Thus, energy malware could simply modify
screen configuration in the background or prevent other apps
from releasing the wakelock, forcing the victim system running
in a high power state.

To improve energy profiling accuracy and tackle collateral
energy bugs, we design E-Android that takes the collateral
energy consumption into account. E-Android consists of three
major components: (1) an extension of Android framework to
record all events that potentially invoke collateral energy bugs,
(2) an enhanced energy accounting module to calculate energy
consumption with consideration of collateral effects, and (3) a
revised battery interface to inform users all information related
to energy consumption. When an app attempts to interact with
other apps, perform wakelock related operations, or change
screen configuration, E-Android collects apps’ user IDs and
the type of operations. E-Android also carefully monitors the
activities of task stacks, especially the state of the current
foreground activity, to accurately identify a collateral energy
bug. E-Android maintains a collateral energy map for fine



grained collateral energy accounting. The collateral energy
consumption will be appropriately charged to the initiated
source. E-Android is able to handle sophisticated situations
such as collateral energy attack chains. We modify two battery
interfaces to work jointly with E-Android. A mobile user can
clearly understand how battery drains in a smartphone. E-
Android can not only be applied for the defense of a collateral
energy attack, but also produce more accurate energy accounting
of benign apps.

We conduct a series of experiments to evaluate E-Android.
We implement six types of energy malware running in a
Nexus 4 mobile phone. We use both original versions and our
modified versions of Android’s official Batterystats application
and PowerTutor [36] to measure the energy consumption. Our
experiments indicate that all collateral energy attacks can
successfully deplete battery life without being noticed by the
original versions of battery interfaces. They also indicate that
E-Android is able to detect and expose all energy malware.
Under normal scenarios, we show that E-Android can illustrate
all collateral energy consumptions. Moreover, we use both
microbenchmark and marcobenchmark to quantify the overhead
of E-Android, in terms of performance and energy consumption.
We also use AnTuTu benchmark [1] to measure the memory
overhead. Our results show that E-Android incurs negligible
overhead.

The remainder of the paper is organized as follows. Section
2 briefly introduces the existing energy modeling methods.
Section 3 describes several attack vectors that can sidestep
current energy modeling and then presents collateral energy
attacks based on these attack vectors. Section 4 details our
defense mechanism. Section 5 presents our experiments and
evaluation results. Section 6 surveys related work. Finally,
Section 7 concludes.

II. ENERGY MODELING OVERVIEW

Fine-grained energy modeling of smartphones provides a
straightforward way to understand the energy consumption of
mobile apps, and has been investigated for years. These works
utilize either extra power meters or sensors [6], [17] to break
down energy consumption and build power estimation models
for apps. Including Android per se, a battery interface is further
utilized to provide users with necessary and detailed energy
information.

A mobile phone is composed of a wide variety of hardware
components, with examples including CPU, memory, WiFi,
GPS, camera, bluetooth, and LED screen. Different apps
could differ in functionality and trigger different usage on
different hardware components, and hence turn components
in different utilization or states. Energy modeling works [31],
[36] measure the corresponding energy consumption of each
component under different utilization, e.g., CPU utilization from
0-100 percent. A mathematic model using linear regression is
developed to estimate the energy usage of distinct applications
with the utilization information collected from mobile operating
systems. However, those utilization based approaches could
have an error rate as high as about 20%. As many components
(e.g., GPS and camera) do not have quantitative utilization,
several further works [29], [34] build a power state machine
for components triggered by system calls on the kernel level.

Those works achieve better accuracy than the utilization-based
since they take tail power into consideration.

As one of the most energy draining components, screen
receives extra attention [9], [13]. While high modeling accuracy
has been achieved with several determining factors such as
brightness and materials considered, the policy to distribute
screen energy remains a controversial issue. To illustrate the
amount of energy spent on screen, a battery interface is normally
equipped with two mechanisms. The first is always to allocate
the energy of screen to the foreground app [34], [36], which is
the center of interacting with users. Another policy is to treat
screen as an independent part, where the energy consumed by
screen is always displayed in total. Such a method is used by
the Android official battery interface.

Those works, focusing on energy modeling on an indepen-
dent app, have achieved impressive high accuracy. For example,
eprof [29] specifically decomposes the energy consumption
into the subroutine or thread level, enabling fine grained energy
accounting on a single app. However, all existing approaches
aiming to accurately model energy consumption ignore the IPC
mechanism in the highly dynamic Android ecosystem. As the
fact that each app runs in a separate sandbox with unique user
identification, Android apps largely rely on IPC to communicate
with each other. The negligence, as well as the unsound screen
energy accounting methods, could not only result in possibly
partial energy accounting, but be exploited by specific energy
malware to deplete device’s battery. We will detail this problem
in the next section.

III. INSUFFICIENCIES IN EXISTING ENERGY MODELING

In this section, we first present several mechanisms that
cause collateral energy bugs (i.e., the existence of collateral
energy consumption). Current Android energy modeling fails to
produce appropriate interpretations for those collateral energy
consumptions on related apps. These mechanisms, which largely
exist in normal apps, can be easily exploited as attack vectors to
drain the battery stealthily. We further introduce a new concept,
namely collateral energy attack, to demonstrate the security risk
of the collateral energy bugs. Exploiting those attack vectors,
an adversary is able to deplete a smartphone’s battery without
being detected by energy accounting.

A. Potential Attack Vectors

IPC-based Attack Vector. In Android, an activity occupies
the screen and acts as the foreground user interface. Various
activities collaborate together to form the functionalities of
the app. Although activities are independent, they can switch
and communicate to each other either inside the same app
or between different apps. Here is a simple scenario. Bob
receives a message from Alice while enjoying a music festival.
To share the interesting moments, Bob uses the Message app
to film a half minute video and send it to Alice, instead of
quitting the Message and then starting the Camera app. A
small camera window is embedded in the Message UI. From the
perspective of Bob, all operations seem to occur in the Message
app. Thus, it is reasonable to expect that the Message should
be accounted for the corresponding energy consumption. To
further understand the current energy profiling, we illustrate the
energy consumption measured by Android official BatteryStats



Fig. 1: Energy view when filming in the Message app.

in Figure 1. The figure shows the consumed energy percentages
by the Message and the Camera. The result, however, indicates
that the Message only consumes a quite small portion of energy.
The fact is that the energy drained by video filming is assigned
to the Camera, no matter what app opened the Camera or how
it was opened.

The fact behind this observation is that, when Bob clicks
“Record Video” in the Message, the Message sends an Intent
to request the Camera app. It is the Camera app that actually
records the video. After the recording, the video is returned
to the Message app, and is available to be delivered to Alice.
Interestingly, the camera is reported as the most energy draining
app [4]. However, we observe that the energy consumption
sometimes involves the communications between apps, and
hence other apps should also be responsible for those indirect
energy consumptions.

Such a scenario frequently and legitimately occurs in
Android since IPC serves as the sole approach for enabling apps
to communicate with one another. IPC, built upon the Binder
in the Linux kernel, mainly relies on the Intent in the Android
framework, by which an action from another component can be
requested. The recipient of intent can be invoked by components
from an external app once invoked. With the use of intent, apps
can reuse existing components simply by starting an activity
or a service from other apps. While the intent mechanism,
along with other IPC mechanisms, plays a critical role in
Android, existing energy accounting modules overlook such
factors. The omission could beget unexpected consequences,
including biased energy accounting on normal apps. Even worse,
current energy modeling could be exploited by malicious apps
for mounting a collateral energy attack, leading to even more
serious damage.

Wakelock- & Screen-based Attack Vector. Android con-
tains a sophisticated power management inherited from the
Linux power system [19]. While Linux supports three global
system power states: on, off, and suspend, Android suspends all
peripheral devices by default and turns a device into deep sleep
after some idle time to save energy. In the suspend state, devices
are in a low power state with CPU disabled and processes
halted. To override the aggressive power saving policy, Android
introduces the wakelock, which is a special power management
module to keep devices awake. Android developers are able to
access to four types of wakelocks, including power consuming
components like CPU and screen.

A wakelock must be released once acquired to avoid keeping
device alive. Otherwise, battery will be drained up to 25% per
hour [30]. In case apps fail to release the wakelock properly,
Android does not release the wakelock until the process has

been killed, assisted by the link-to-death mechanism of Android
Binder. When “PowerManagerService” receives a request from
an app to acquire the wakelock, it registers the wakelock and
links a token to the death of the app’s process. Only the death
notification, which is dispatched by the kernel Binder driver, of
the app’s process will inform the device to release the wakelock.

Android attempts to inform developers about the usage of a
wakelock. Unfortunately, Pathak et al. [30] observed that a large
number of developers fail to understand how to properly use a
wakelock. One improper usage is that, an app only releases the
wakelock in the onDestroy() function, without releasing it
in onPause() or onStop(). An activity will step into the
pause state by invoking the onPause() function when it
is covered by a transparent activity. The onStop() function
is triggered when an activity enters background. Only when
the process is destroyed, will onDestroy() be called. Such
misinterpretation causes significant hazards to battery life.
Normally, the app would be destroyed when the user quits
the app, without causing any problem. However, in Android,
a foreground activity could be easily interrupted by popup
activities, e.g., the activity invoked by a notification, an
incoming call or an alarm. The popup, either intentionally or
unintentionally, makes the foreground app that fails to properly
release the wakelock keep draining device energy.

Mis-releasing a wakelock also challenges the screen energy
modeling policy. Existing energy profiling allocates energy
to either the screen or the foreground app, leaving the bug
app unnoticeable. Moreover, a wakelock could be acquired
in background. If the consumed energy is only allocated
to the foreground app rather than the initiator, the energy
modeling would confuse and mislead users on the internal
energy consumption.

Among four types of wakelocks, three of them can keep
the screen on. A wakelock continues playing an irreplaceable
role in the Android power management, although Android has
deprecated parts of a wakelock since Android API 17. App
developers still largely use a wakelock. Thus, existing energy
profiling is insufficient for common real world cases. More
seriously, the inadequate consideration might be abused by
energy malware to drain energy without being disclosed by the
battery interface.

B. Collateral Energy Attack

Threat Model. The collateral energy attacks are launched
on normal unrooted devices to drain battery. An attacker has
no need to exploit any vulnerabilities in operating systems or
the Android framework. To avoid being exposed by the battery
interface, the attacker exploits specific attack vectors, instead
of using hands-on approach. For the IPC-based attack vector,
usually the attacker does not need any permission to use an
exported component of the attacked apps. Also, since the UI
states of an app are standardized, the attacker can easily under-
stand them by either installing the app or reverse engineering
the app. For the screen- and wakelock-based attack vector, the
attacker does need some permissions. Specifically, the attacker
needs the WRITE SETTINGS permission to modify the screen
configuration and the WAKE LOCK permission to acquire a
wakelock.



Fig. 2: Collected apps from Google Play.

To demonstrate those assumptions are common in the
wild, we collect 1,124 popular apps from Google Play. The
collected apps fall into 28 catagories, including game, business,
and finance. We use APKTool [3] to extract the Android-
Manifest.xml file of each app by reverse-engineering the app.
We inspect those apps from three aspects: (1) does the app
contain an exported component? (2) does the app require
the WAKE LOCK permission? and (3) does the app require
WRITE SETTINGS permission?. Figure 2 shows the result:
72% of apps contain exported components; 81% and 21%
of apps require the WAKE LOCK and WRITE SETTINGS
permissions, respectively. As a collateral energy attack can be
launched by any apps, malware can camouflage as a game or
useful tool to acquire those permissions above.

Attack #1. Similar to the camera case, malware hijacks
components belonging to other apps. Existing energy modeling
does not consider IPC communications. This mechanism
enables malware to drain the target device’s energy through a
combination of legal operations, and hence bypass the energy
monitoring. Compared with a traditional component hijacking
problem, it is more difficult to prevent energy based hijacking,
because there is no need for a data flow between components
to transmit information. Thus, energy malware could choose
the energy hog component to launch an attack.

Attack #2. When malware is launched, malware can open
other apps concurrently and make them run in background. It
has been long reported that a background app definitely drains
battery. Android does not kill background apps immediately.
Background activities enter the “pause” or “stop” state. The
app will release all resources only when it enters the “destroy”
state. Also, services run in the background handling extensive
workload and drain battery. Even in the idle state, the battery
life could be decreased by up to 77.5% by simply installing
Google services comparing to pure AOSP Android [23]. Thus,
triggering background apps is a very effective way to drain
battery.

Attack #3. Bind to services without unbinding. Malware
could further launch attacks on background services, where
heavy computational workload normally runs. A service could
be started by calling startService() function or bound
by bindService(), allowing IPC communications across
processes. A started service will not be terminated even
the started component is destroyed and must be stopped
by stopService() or stopSelf() to avoid running
indefinitely. Similarly, a bound service must be unbound.
However, for services always running in the background, the
life cycle differs from activities. Multiple components can bind
to a single service simultaneously, making the service alive
until all connections are unbound, even under the condition

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Time (h)

B
a

tt
e

ry
 P

e
rc

e
n

ta
g

e

 

 

Bind_service

Brightness_10

Brightness_full

Brightness_low

Interrupt_app

Fig. 3: Difference of time lapsed to drain the battery.

that stopService() has been triggered. Thus, an exported
service bound by malware will keep alive infinitely and drain
battery even after the victim attempts to stop the service.

Attack #4. Interrupt attacked apps to background. Malware
could also forcibly switch the victim to background through
normal operations, such as opening the launcher. Furthermore,
sophisticated malware could utilize other complicated tech-
niques to interrupt the foreground app without being noticed
by users. For example, attackers can interrupt and switch the
app to background when the user attempts to quit the app. The
misinterpretation of wakelock could make the energy attack
even more serious. Since the app enters the “stop” state, instead
of being killed, it might fail to release the wakelock. Since
the wakelock is un-released by the victim, energy accounting
will tax the energy into the victim, without disclosing malware
behind curtain.

Attack #5. Drain energy through changing screen configu-
ration. The brightness acts as the determining factor for the
screen energy consumption. Malware could change the screen
setting in background. A large number of apps enhance the
brightness when they are running in foreground. Therefore,
users probably would not perceive the malicious adjustment of
brightness by malware. In particular, to avoid being noticed,
malware could secretly escalate the brightness with a few levels.
Since Android provides 256 levels to adjust the brightness of
screen, such a slight enhancement might not affect users, but
cut the battery lifetime. The brightness could also be adjusted
automatically. In the auto mode, Android chooses the brightness
level based on surrounding environments and disables manual
change on lighting. Complicated and advanced energy malware
could camouflage as Android auto screen settings, by setting a
higher value after obtaining current auto set brightness.

Attack #6. Acquire a screen wakelock without releasing.
The wakelock could also be utilized to conduct a screen energy
attack. Malware could easily keep screen on by intentionally
acquiring but not releasing the wakelock. The wakelock could
even be acquired by services. The consumed screen energy
will be wrongly attributed to the foreground app or Android
launcher, rather than malware.

Multi- & Hybrid Attack. Sophisticated malware could
combine the above attacks together for more effective attacks.
Attackers could also conduct multiple attacks on the same
attacked app. For instance, malware could bind a victim’s
service and increase the brightness when the victim is running
in foreground. Also, malware could spread the attack to a series



of victims. Malware could conduct an attack on one victim,
which unintentionally involves another, leading energy attack
chains.

Attack Analysis. Energy malware stealthily depletes battery
by abusing attacked apps. Hence, the effectiveness of such an
attack depends on the function of victims rather than malware
per se. Different apps lead to different energy consumption. We
utilize several simple cases to study the attack effectiveness. We
measure the time duration of the above attacks for consuming
the total battery. For each percentage of battery, we record the
time until the battery is dead. Keeping screen on via the screen
wakelock will significantly accelerate the battery consumption
compared with using the auto lock that turns the screen off.
For all experiments, we set the wakelock so that the screen
will be forced on. We treated the lowest brightness case as
the baseline case. Our simple cases include setting brightness
with the maximum value, setting brightness with 10, binding a
service of other app, and interrupting an app in the background.
Figure 3 illustrates the results of our simple attack cases.

As shown in the figure, screen strongly affects battery drain.
A small increase of brightness, which brings little visual effect,
can increase battery drain. Also, running an app in background
also divulges battery. Note that we simply use our demon
apps that almost have no functionality as attacked apps in
this experiment. Modern apps containing more complicated
functions would consume more collateral energy. Also, the
drain of battery will be even faster if energy malware employs
multiple attack vectors simultaneously. Thus, a collateral energy
attack is able to effectively drain a smartphones battery in a
stealthily manner.

Attack Scenarios. Collateral energy attack could be viewed
as a variation of denial of service attack. Malware can reduce the
battery’s lifetime and degrade a user’s experience by indirectly
consuming energy. Furthermore, collateral energy attacks could
mislead a user’s attention to an innocent app and cause unfair
competition. For instance, an app that is competing with
another app could intentionally mount collateral energy attacks
on the rival so that the rival consumes much more energy
unconsciously, resulting in energy disadvantage.

Unlike traditional attacks targeting at leaking personal
private information or controlling system resources, collateral
energy attacks aim to significantly reduce the battery’s lifetime,
as the battery is the most scarce resource of a mobile device.
Also, collateral energy attacks could be conducted accompany-
ing with traditional attacks. For example, the privilege escalation
attacks utilize IPC calls to escalate privileges inside the sandbox.
At the same time, the IPC calls could be abused by malware
to launch collateral energy attacks.

IV. E-ANDROID: A NEW ENERGY PROFILING TOOL

Traditional malware analysis including both static and
dynamic techniques could be applied to detect collateral energy
bugs. However, as we mentioned above, normal apps could also
induce a large amount of collateral energy consumption. As a
result, energy malware might exhibit normal activity features
and can evade malware analysis. Furthermore, compared with
other attacks utilizing IPC channels, explicit data flows between
different components may not exist in collateral energy attacks.
Thus, it might be difficult to discern collateral energy attacks

Fig. 4: E-Android Architecture

from normal operations. Also, it is entirely possible that an
app consuming much collateral energy is still welcomed by
mobile users. From the perspective of energy profiling, the
key is to accurately and comprehensively profile the energy
consumption so that users can understand where energy goes
and make their own decisions on apps management. Therefore,
we introduce E-Android to assist the battery interface to reveal
collateral energy consumption and defend against collateral
energy attacks.

E-Android is composed of three major components: an
extension of Android to log all potential energy operations,
an enhanced energy accounting module to calculate energy
consumption with consideration of collateral effects, and a
revised battery interface to inform users of all the energy
consumption related information. E-Android can not only be
applied to defend against energy malware, but also provide
users with a more accurate profile of the internal energy
consumption in mobile devices. E-Android leverages dynamic
methods, instead of static methods, to measure collateral
energy consumption, because dynamic methods provide a
better understanding of the runtime context, such as the timing
of triggering collateral energy bugs, which are crucial for
measuring collateral energy consumption.

We illustrate the architecture of E-Android in Figure 4.
Basically, E-Android monitors a series of events that potentially
lead to a collateral energy attack, e.g., starting an activity,
binding a service, changing screen settings. Each time an
event is triggered, E-Android checks the user ID of both the
driving app and the driven app1. If different, E-Android records
the user ID of both apps, as well as the type of operations,
and notifies the energy accounting module. The module then
updates the relevant energy data. The battery interface displays
a collaborative energy view, with all related apps specified.

A. E-Android Framework

System Apps. Android contains built-in apps and internal
apps. In Android, the home UI is essentially the launcher
app, which is used to interact with all apps for users. Users
could start an app by touching an icon in launcher or return

1The driving app is the app operating others, e.g., the app starting others,
and the driven app is the app being operated, e.g., the app being started.



Start Move to 
front

Attack ends when the 
app is started again

Attack ends when the 
app is moved to front

(a) Activity

Start Move to 
front

Interrupt Back to 
front

Attack ends when the 
app is started again

Attack ends when the 
app is moved to front

Attack ends when the 
app is popped out

(b) Interrupting activity

Start

Stop

StopSelf

Bind

Unbind

(c) Service

Begin

End

Increase brightness /
Switch to manual mode

Decrease brightness /
Switch to auto mode /
Changed by system UI

(d) Screen

Release

Attack begins when 
acquiring not in 

foreground

Acquire
Background

Enter
Background

Attack begins when 
wakelock not 

releasing before 
entering background

(e) Wakelock

Fig. 5: Attack lifecycle

to the home UI via the home button. Another key app is the
system UI. The system UI allows users to customize a device’s
characteristics, such as screen brightness. The “resolverActivity”
is used for users to select an app responding to an implicit
intent. E-Android treats these built-in apps and internal apps
as system apps and excludes them from the collateral energy
attack list. However, E-Android still logs events of those special
apps as a vital factor to correctly calculate collateral energy
consumption.

Activity. An activity possesses the screen and stays active
running in foreground. An activity could be started by explicit
intents or implicit intents. The component name is specified in
an explicit intent. The activity will be started directly as a result.
For the explicit intent case, E-Android directly keeps tracking
of the driving app and the driven app. Contrarily, an implicit
intent only declares a general action, instead of specifying
the component name. When an implicit intent is launched,
Android starts “resolverActivity”, where a user could designate
the app to start. Once the user makes a decision, Android starts
the selected app by dispatching a new explicit intent. For the
implicit intent case, E-Android tracks both intents and ignores
the Android system’s UI, and records both apps’ user IDs after
the choice is made.

E-Android views that a collateral energy attack starts when
an activity is launched by another app. The attack period lasts
till the next time the driven app is started, as illustrated in
Figure 5a. Such a policy is reasonable since the driven activity
could continuously drain the battery even in the background.
On the other hand, if the driven activity incurs no extra energy
consumption in the background, the addition of such a period
has little impact on the driving app.

Android maintains certain task stacks to manage activities.
When an activity is sent back to background, it remains in the
stacks keeping all statuses at that time. Android pops out the
most recent activity when one leaves foreground. Moreover,
users or apps equipped with proper permissions could reorder
the stack. A background activity could be simply moved to
foreground without necessity to start. E-Android also accurately
observes the period of a collateral energy attack by monitoring
the statuses of task stacks.

Interrupting Activity. E-Android regards a foreground
activity that forcibly moves the prior into background as an
interrupting activity. An interrupting activity could possibly
lead continuous battery draining, as the driven activity is
forced in the stop state. E-Android records the user IDs of

the previous foreground app and the interrupting activity if
they are different. Several ways could resume the front app,
including the operations from the user, IPC operations, and the
operations on the activity stack. As shown in Figure 5b, the
attack period ends when the previous front app resumes and
the next potential attack period starts. By this way, E-Android
can clearly record and allocate the energy consumption of each
period without adding undeserved energy consumption to any
apps.

Service. E-Android records several events related to a
service, including start/stop/stopSelf and bind/unbind. Similar
to activity, E-Android notifies the battery interface only when
IPC happens between two apps. The period accounting for a
collateral energy attack begins from start/bind and ends at stop
or stopself/unbind.

Screen & Wakelock. Screen brightness could be changed
either manually or automatically. If apps set a value in the
auto mode, the value is saved into the settings provider but
not valid until the mode is switched to manual. E-Android
records two events as the start of a screen collateral attack. The
first event is to enhance screen brightness under the manual
mode. The second is that apps attempt to switch the auto
mode to the manual mode. Once the screen collateral attack
starts, E-Android also scrupulously monitors the end of period.
Those events include switching into the auto mode, brightness
changed by system UI (i.e., operated by users), and brightness
decreasing by the attacking app. Figure 5d illustrates the details.

E-Android also records the usage of the wakelock related
to screen. E-Android starts the wakelock collateral attack when
the foreground app is not the app acquiring the wakelock, to
defend against malware acquiring the wakelock in the service.
Also, since apps use the wakelock to prevent screen off during
its lifetime, a wakelock collateral energy attack begins under the
condition that the wakelock is not released while the foreground
app is altered. E-Android marks the end of the attack when
the wakelock is released.

B. Energy Accounting Module

The energy accounting module maintains specific energy
modeling for collateral energy consumption. A detailed energy
map between an app and its collateral apps is maintained for
each app. Each time the battery interface captures a notification,
it updates the collateral energy map. While a sophisticated
policy could be easily applied, currently the strategy handling
basic collateral attacks is straightforward. E-Android counts



Battery
Interface

E-Android
Framework

A binds B

Add B into A's map
Attack Begin

A starts B

Update 
States

A interrupts B

Update 
States

User starts B

Activity 
states 
End

A unbinds B

Collateral 
Attack 
End

Time

Time

Fig. 6: Multi-collateral Attack

Battery
Interface

E-Android
Framework

A binds B

Add B into A's map
Attack Begin

B starts C C changes 
brightness

User sets 
brightness User Starts B,C

Collateral 
Attack 

End (B,C)

Time

Time

Add C into A's map
Attack Begin

Add screen into 
A's Map

Attack begin

Screen 
attack 
End

Fig. 7: Hybrid Attack

the driven app’s energy consumption in the attack period to
the driving app. However, one issue is multi-collateral attack
(Figure 6) on the same app. An app could start activities, bind
services, and interrupt activities on the same app. To avoid
repeated accounting energy consumption for the same driving
app, E-Android carefully maintains states for each attack to
connect driving apps and driven apps. The connection will be
revoked only after all collateral attacks end.

Moreover, the hybrid collateral attack complicates the
accounting. The intricate IPC communications in Android easily
lead to collateral attack chains. An activity started by another
app could act as the man in the middle and interact with the
third app, which could conduct more complex attacks. Take
Figure 7 as an example. App A binds a service of app B, which
starts one activity belonging to app C. App C then stealthily
changes screen. Since it is app A that starts the whole collateral
energy attack, it is reasonable to charge the energy drained by
C and screen to A. At the same time, E-Android still needs
to monitor the attack period of each attack on the chain. If
one attack is over, the following attack should be updated. It is
important to consider such a chain scenario, due to its frequent
appearance in both malware and legitimate apps, e.g., Bob
opens the Message started by the Contacts and sends a video
taken by the Camera to Alice.

E-Android handles this situation by traversing each energy
map and updating energy consumption, as formulated in
Algorithm 1. Each time a beginning event occurs, the driving
app is checked in the energy map for each host app. If it exists
and the connection is alive, E-Android adds current driven app
into the host’s energy map. Conversely, when it comes to an
end event, E-Android also removes the link brought by the
driving app by updating attack states of the driven app element
in the energy map.

The situation is more complicated for service events.
The driven app could have already bound several energy

Algorithm 1 Energy update algorithm

1: appn ← {Driven app or Screen}
2: mg ← {Energy map of driving app}
3: Mp ← {Energy maps contain driving app}
4: Mc ← {Energy maps of apps in mg}
5: procedure EVENT TRIGGERED
6: EndLastAttack(appn)
7: mg ← AddElement(appn)
8: for each app appi ∈ Mp do
9: mi ← AddElement(appn)

10: end for
11: if Event is service related then
12: for each app appj ∈ Mc do
13: mg && Mp ← AddElement(appj)
14: end for
15: end if
16: end procedure

intensive services before the triggered event. Those extra energy
consumptions should also be charged for the driving app and
its parents. E-Android updates the energy maps of the driving
app and its parents by adding the elements in the driven app’s
energy map.

Note that only the part of energy consumption during the
attack lifecycle would be superimposed to the collateral energy
of the driving app. Once all attack lifecycles end, the relation
between the driving and driven apps is broken and no extra
energy would be charged.

C. Battery Interface

The battery interface lists apps that consume a great deal
of energy. E-Android ranks apps by total energy consumptions
including collateral energy consumption. Moreover, for each
app, E-Android provides a detailed inventory specifying con-
tributions of all attack related apps. To better demonstrate the
energy consumption, the apps’ original energy is also listed.
One sample view is provided in Figure 8, which exhibits the
energy breakdown of the legitimate hybrid attack above. The
breakdown assists users in better understanding the energy
consumption.

V. IMPLEMENTATION

We modified the framework of Android 5.0.1 to implement
E-Android. E-Android mainly relies on “am”, which manages
all components in Android, to record collateral energy events.
We also utilized other classes such as “powerManagerService”
to supervise the usage of wakelocks. All collateral energy events
are directly input to the energy accounting module. We included
the collateral attack modeling features to both Android official
battery interface and powerTutor [36].

We also implemented six types of energy malware as
we presented before. The malware implementation is quite
straightforward, except for malware types 4 and 5. Malware
#4 interrupts and switches a victim to background when a user
attempts to quit the app. Most apps transfer to root activity first
before opting out. Android will pop out an exit dialog to inquire
users. If “OK” is clicked, the app is destroyed. Therefore, once
malware successfully eavesdrops the appearance of such a



(a) Contacts (b) Message

Fig. 8: Sample view of energy breakdown by E-Android with
revised PowerTutor

dialog, it can send a transparent activity to cover the victim
activity. When the user clicks the position where “OK” locates
in the transparent activity, malware sends an intent to start
home UI. While the user feels no difference, the home UI
actually induces the victim to invoke onStop(), instead of
being destroyed, and thus continue draining the battery in
the background.

There are different ways to monitor the occurrence of the
dialog. Like the technique used in the UI inference attack [8],
we can utilize the shared virtual memory size of SurfaceLinger
to infer activities. SurfaceLinger is the process to render UI
in Android. The shared virtual memory size will change when
the UI state is changed. Although a dialog is not an activity,
both the root activity and the style of a dialog usually remain
unchanged for most apps. Thus, the offset of the shared virtual
memory is still applicable to infer the occurrence of the exit
dialog. Using this technique, malware #4 is able to detect the
exit dialog of the victim and sends a transparent page to cover
the dialog and start the home UI once the position of “OK” is
clicked.

Malware #5 secretly enhances the brightness in the back-
ground by modifying the configuration in Settings. However,
a service might not be able to set window attributes and the
change may not be in effect immediately. To achieve the attack
goal, malware #5 sends a transparent self-close activity to set
window attributes.

To make the attacks stealthier, our malware sets a particular
flag to hide itself from recent apps so that normal users would
be unaware of the existence of malware. The attacks mounted
by malware appear normal, due to the fact that some apps in
Android would listen for specific intents to automatically launch.
For example, some apps would be opened when a user unlocks
the screen by monitoring the ACTION USER PRESENT
intent.

VI. EXPERIMENTS

E-Android is designed to assist users to detect collateral
energy consumption. To validate the effectiveness of E-Android,
we ran experiments on both Android and E-Android, and
compared the results. We first showed that E-Android can
accurately profile collateral energy consumption in normal
cases. Then we demonstrated that collateral energy attacks can
sidestep Android and deplete battery, but E-Android can easily
detect those attacks. We further presented that E-Android incur

(a) Scene #1 (Similar to attack #1
and attack #2)

(b) Scene #2 (Similar to hybrid
attack)

(c) Attack #3 (d) Attack #4

(e) Attack #5 (f) Attack #6

Fig. 9: Experimental results

little overhead on both performance and energy consumption
in comparison with Android.

We utilized both Android’s official interface and PowerTutor
to measure the battery consumption. The results of PowerTutor
are similar to those of Android’s interface, thus we omitted
them due to space limit.

A. Effectiveness

We first conducted experiments simulating real scenarios.
We opened the Message app and waited 30 seconds, and then
used it to take a 30 seconds short video. A more complicated
scenario is that we used the Contacts to open the Message,
then film a 30 seconds video exactly like the hybrid attack
example. Those two cases are common and can represent
normal smartphone usages.

Figures 9a and 9b illustrate the results for both normal cases.
For better presentation, we use “A” to represent the results of
Android, and “E” to represent the results of E-Android. Also,
we use ‘+’ to indicate the components in E-Android. As we can
see, in the Android energy modeling, the Camera app expends
much more energy than the Message app, regardless of the
fact that the Camera is opened by the Message. However, in E-
Android, the Message is also charged for the portion of energy
consumed by the Camera. Thus, while the driving app would
not be charged for anything in the original energy modeling,
E-Android clearly reveals the collateral energy consumption
and profile the battery usage by apps properly.



Fig. 10: Boxplot of time cost (ms)

We then launched six types of collateral energy attacks using
our implemented malware. Each attack lasts 60 seconds. In
the first two attacks, malware either directly or simultaneously
initiates activities of other apps. For malware #3, it binds
the victim’s service once it detects the service is started.
The attacked app starts its service and stops it immediately.
However, the connection bound by malware forces the service
to run continuously. We measured the energy consumption after
malware #4 interrupts the victim to background. For attack #5,
we first measured the regular screen energy consumption. Then,
we measured the energy consumption after malware enhances
brightness. While Android turns screen off after 30 seconds,
we measured the energy consumed by screen for 60 seconds
under the conditions that malware #6 releases/does not release
the wakelock.

For attacks #1 and #2, their results are similar to that of the
normal case #1. We displayed the results of attacks #3 and #4
in Figures 9c and 9d, as well as the results of attacks #5 and
#6 in Figures 9e and 9f, respectively. For Figures 9e and 9f,
the upper part indicates the energy consumption under normal
circumstances. The lower part presents the results of both
Android and E-Android under attacks. As the figures show,
energy attacks consume much more energy than normal usage.

Notation Definition

Start self service Start a service belongs to same app by
startService().

Stop self service Stop a service belongs to same app by
stopService().

Start other service Start a service belongs to different app by
startService().

Stop other service Stop a service belongs to different app by
stopService().

Bind self service Bind a service belongs to same app by
bindService().

Unbind self service Unbind a service belongs to same app by
unbindService().

Bind other service Bind a service belongs to different app by
bindService().

Unbind other service Unbind a service belongs to different app by
unbindService().

Start self activity Start an activity belongs to same app by
startActivity().

Start other activity Start an activity belongs to different app by
startactivity().

Wakelock acquire Acquire a wakelock by acquire().
Wakelock release Release a wakelock by release().

Change screen Change screen brightness.

TABLE I: Notations of micro operations.

Also, all those attacks can successfully bypass the supervision
of the Android battery interface. However, E-Android can detect
all these collateral energy attacks. Moreover, from the result
of attack #3, we can also clearly see that only the energy
consumed during the period of a collateral attack is attributed
to malware. E-Android does not charge the energy consumption
beyond that attack to malware.

B. Overhead

Micro benchmark. To measure the overhead of E-Android,
we first recorded the time cost of several critical events that
E-Android monitors. Table I lists all micro operations we
measured. We run each operation 50 times on both Android
and E-Android.

We excluded the two biggest and smallest values as outliers
in our dataset. Figure 10 illustrates the box plots of execution
time of all operations. The unit of vertical coordinate is
millisecond. We first disabled the energy accounting module
of E-Android. The difference between Android and E-Android
is actually the overhead of the E-Android framework, which
monitors all events related to collateral energy consumption.
The results show that the E-Androids framework has almost the
same performance overhead as Android. Complete E-Android
indicates the time cost when E-Android enables the energy
accounting module. We can see that E-Android only induces
trivial overhead when events occur within a same app, e.g.,
starting another activity of a same app. This is because the event
within a same app is not a collateral energy event, and thus
it does not bring any extra workload to the energy accounting
module and the battery interface. For a case with multiple apps,
E-Android does cost more time on those operations. However,
the overhead still remains the same order of magnitude with less
than few milliseconds. Moreover, the delay only occurs when
collateral energy related events are triggered. Otherwise, E-
Android works exactly like Android, without inducing any extra
overhead. Overall, the little overhead induced by E-Android
will not degrade users’ experience.

AnTuTu Benchmark. We also used AnTuTu benchmark
to measure the CPU and memory overhead. AnTuTu evaluates
performance in several aspects, including memory, CPU per-
formance for both float and integer, and I/O. The bigger score
means better performance. We listed the total scores as well as



Fig. 11: AnTuTu benchmark

several key factors in Figure 11. The results demonstrate that
E-Android has a similar overhead as Android.

Energy Efficiency. We also recorded the battery level
to validate the energy efficiency of E-Android. In all above
experiments, the decreased energy level is the same between
Android and E-Android. Since E-Android only takes additional
actions when collateral energy events are triggered, it will not
drain extra energy at other times.

C. Discussion

In comparison with traditional energy profiling, E-Android
profiles the energy consumption of apps from a different
perspective, with an emphasis on the interactions among apps.
Since almost no extra overhead is introduced if the enhanced
energy accounting module in E-Android is disabled, E-Android
would not affect users who prefer to use the original energy
modeling. On the other hand, as our experimental results
show, with energy modeling enabled, E-Android will provide a
more accurate and complete energy profiling and detect energy
malware with minor overheads.

VII. RELATED WORK

Energy Modeling. Many prior studies [6], [17], [29], [31],
[34], [36] focus on energy modeling. Dong et al. [12] escalated
the rate of energy modeling from 1-10hz to 100hz while
keeping high accuracy. Mittal et al. [25] presented an energy
emulation tool that estimates the energy usage of an emulated
workstation. Other works [9], [13] focus on energy modeling
on screen. While these works have achieved high accuracy
and high frequency, none of them consider IPC. Different
from these prior works focusing on a single app, we take the
interaction between apps into account and propose new policies
to model energy. Our work enhances existing approaches with
a comprehensive and impartial energy modeling.

Energy Bug. Several studies investigate abnormal battery
drain issues. Pathak et al. [28] used Eprof [29] to profile power
consumption. They found most energy spent on a small part
of routines. Pathak et al. collected posts from four mobile user
forums where various energy bugs were reported, including
bugs in hardware, OS, framework, and apps [27]. Thiagarajan et
al. [32] studied how mobile browsers consume energy. Pathak
et al. [30] conducted a comprehensive analysis on no-sleep bugs
using static methods and reported a variety of wakelock bugs,

such as releasing a wakelock improperly. More works [21],
[35] develop tools to automatically diagnose these energy bugs.
While those works focus on special energy bugs of independent
apps, they do not consider the interaction between apps.

Energy Malware. Several works study energy malware
on mobile device. Martin et al. [22] first implemented three
types of attacks aiming to drain energy of a mobile phone: (1)
sending repeated network requests to a victim, (2) replacing a
still image with an animated GIF, and (3) making cache miss
by repeatedly writing and reading an array with different length.
Chandra et al. [7] proposed a covert channel attack based on
smartphone battery. Although these attacks are proved to be
effective, they are detectable by battery interface. Users could
easily detect them by simply checking the energy consumption.
Kim et al. [18] proposed power signatures to detect energy
malware. While they achieved promising results of detecting
four types of bluetooth worms and a DoS-attack-like bomber,
power signature cannot tackle collateral energy malware that
drains energy via an indirect approach.

Human-Battery Interface. The human battery interface
that allows users to monitor the energy consumption is also
a well-studied topic [14], [16], [24], [33]. Previous research
attempts to develop a more accurate interface with various
forms and different contents to illustrate the power consumption.
While our work could easily incorporate with these advanced
battery interfaces, we just choose the basic interface as the tool
to display the energy consumption of a smartphone.

Security and Privacy. Numerous researchers have studied
security and privacy issues on mobile phones [5], [15], [38]
The privilege escalation [11], component hijacking [20], and
content provider pollution attacks [39] leverage IPC in Android
for malicious purposes. Several works [26], [37] have been
presented to defend against those IPC-based malware. However,
energy malware depleting energy behaves normally, and thus
it can avoid being detected by traditional malware defense
mechanisms. Curti et al. [10] detected malware based on energy
consumption, but they used existing energy modeling tools to
measure an app’s energy consumption. Therefore, such a work
still falls into the weakness of current energy modeling.

VIII. CONCLUSION

In this paper, we are the first to introduce the concept
of collateral energy consumption and related bugs. We have
revealed several mechanisms in Android such as IPC that
could confuse existing energy modeling approaches to trigger
collateral energy bugs. We have further presented a set of new
attacks based on collateral energy bugs and demonstrated that
Android is vulnerable to these attacks. Specifically, exploiting
the collateral energy bugs, energy malware can shorten the
battery’s lifetime and evade the supervision of current energy
accounting. We have proposed E-Android to assist mobile
users to tackle collateral energy bugs. E-Android can not
only detect energy malware, but also provide a more accurate
energy accounting under normal conditions. We have evaluated
both Android and E-Android in terms of accounting energy
consumption under six implemented malware and two normal
scenarios. While all the proposed attacks can stealthily drain
battery without being caught in Android, E-Android can clearly
reveal collateral energy bugs and detect the attacks. Finally, we
have shown that the overhead of E-Android is minor.



IX. ACKNOWLEDGMENTS

We would like to thank our shepherd Feng Qian and the
anonymous reviewers for their insightful and detailed comments.
This work was partially supported by NSF grant CNS-1618117.

REFERENCES

[1] Antutu benchmark. http://www.antutu.com/en/index.shtml.
[2] Smartphone user penetration as percentage of total global population

from 2011 to 2018. http://www.statista.com/statistics/203734/global-
smartphone-penetration-per-capita-since-2005/.

[3] A tool for reverse engineering android apk files.
https://ibotpeaches.github.io/Apktool/.

[4] Top 10 android battery-sucking vampire apps.
http://betanews.com/2014/02/27/top-10-android-battery-sucking-
vampire-apps/.

[5] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and
C. Wolf. Mobile Security Catching Up? Revealing the Nuts and Bolts
of the Security of Mobile Devices. In IEEE S&P, 2011.

[6] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In USENIX ATC, 2010.

[7] S. Chandra, Z. Lin, A. Kundu, and L. Khan. Towards A Systematic Study
of the Covert Channel Attacks in Smartphones. In SECURECOMM,
2014.

[8] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App without
Actually Seeing It: UI State Inference and Novel Android Attacks. In
USENIX Security, 2014.

[9] X. Chen, Y. Chen, Z. Ma, and F. C. Fernandes. How is Energy Consumed
in Smartphone Display Applications? In ACM HotMobile, 2013.

[10] M. Curti, A. Merlo, M. Migliardi, and S. Schiappacasse. Towards
Energy-Aware Intrusion Detection Systems on Mobile Devices. In IEEE
HPCS, 2013.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege
Escalation Attacks on Android. In Information Security, 2011.

[12] M. Dong and L. Zhong. Self-Constructive High-Rate System Energy
Modeling for Battery-Powered Mobile Systems. In ACM MobiSys, 2011.

[13] M. Dong and L. Zhong. Chameleon: A Color-Adaptive Web Browser
for Mobile OLED Displays. IEEE Trans. on Mobile Computing, 11(5),
2012.

[14] D. Ferreira, E. Ferreira, J. Goncalves, V. Kostakos, and A. K. Dey. Re-
visiting Human-Battery Interaction with an Interactive Battery Interface.
In ACM UbiComp, 2013.

[15] X. Gao, D. Liu, H. Wang, and K. Sun. PmDroid: Permission Supervision
for Android Advertising. In IEEE SRDS, 2015.

[16] W. Jung, Y. Chon, D. Kim, and H. Cha. Powerlet: An Active Battery
Interface for Smartphones. In ACM UbiComp, 2014.

[17] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha. DevScope: A
Nonintrusive and Online Power Analysis Tool for Smartphone Hardware
Components. In CODES+ISSS, 2012.

[18] H. Kim, J. Smith, and K. G. Shin. Detecting Energy-Greedy Anomalies
and Mobile Malware Variants. In ACM MobiSys, 2008.

[19] M. Lentz, J. Litton, and B. Bhattacharjee. Drowsy Power Management.
In ACM SOSP, 2015.

[20] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities. In ACM CCS,
2012.

[21] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K.
Saul, and G. M. Voelker. eDoctor: Automatically Diagnosing Abnormal
Battery Drain Issues on Smartphones. In USENIX NSDI, 2013.

[22] T. Martin, M. Hsiao, D. S. Ha, and J. Krishnaswami. Denial-of-Service
Attacks on Battery-powered Mobile Computers. In IEEE PerCom, 2004.

[23] M. Martins, J. Cappos, and R. Fonseca. Selectively Taming Background
Android Apps to Improve Battery Lifetime. In USENIX ATC, 2015.

[24] G. Metri, W. Shi, M. Brockmeyer, and A. Agrawal. BatteryExtender: An
Adaptive User-Guided Tool for Power Management of Mobile Devices.
In ACM UbiComp, 2014.

[25] R. Mittal, A. Kansal, and R. Chandra. Empowering Developers to
Estimate App Energy Consumption. In ACM MobiCom, 2012.

[26] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon. Effective Inter-Component Communication Mapping
in Android with Epicc: An Essential Step Towards Holistic Security
Analysis. In USENIX Security, 2013.

[27] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping Energy Debugging
on Smartphones: A First Look at Energy Bugs in Mobile Devices. In
ACM HotNets, 2011.

[28] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app? Fine Grained Energy Accounting on Smartphones with Eprof.
In EuroSys, 2012.

[29] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-Grained
Power Modeling for Smartphones Using System Call Tracing. In EuroSys,
2011.

[30] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my
phone awake? Characterizing and Detecting No-Sleep Energy Bugs in
Smartphone Apps. In ACM MobiSys, 2012.

[31] A. Shye, B. Scholbrock, and G. Memik. Into the Wild: Studying
Real User Activity Patterns to Guide Power Optimizations for Mobile
Architectures. In MICRO, 2009.

[32] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who
Killed My Battery: Analyzing Mobile Browser Energy Consumption.
In WWW, 2012.

[33] K. N. Truong, J. A. Kientz, T. Sohn, A. Rosenzweig, A. Fonville,
and T. Smith. The Design and Evaluation of a Task-Centered Battery
Interface. In ACM UbiComp, 2010.

[34] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. AppScope: Application
Energy Metering Framework for Android Smartphone Using Kernel
Activity Monitoring. In USENIX ATC, 2012.

[35] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and
L. Yang. ADEL: An Automatic Detector of Energy Leaks for Smartphone
Applications. In CODES+ISSS, 2012.

[36] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang. Accurate Online Power Estimation and Automatic
Battery Behavior Based Power Model Generation for Smartphones.
In CODES+ISSS, 2010.

[37] M. Zhang and H. Yin. AppSealer: Automatic Generation of Vulnerability-
Specific Patches for Preventing Component Hijacking Attacks in Android
Applications. In NDSS, 2014.

[38] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization
and Evolution. In IEEE S&P, 2012.

[39] Y. Zhou and X. Jiang. Detecting Passive Content Leaks and Pollution
in Android Applications. In NDSS, 2013.


