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Abstract—Containers enable a computing system to host mul-
tiple isolated applications, making more cost-efficient use of
the available computing resources. However, exploiting shared
computing resources, adversaries can launch various real-world
attacks (e.g., denial-of-service attacks) inside containers. In this
paper, we present TORPEDO, a fuzzing-based approach to detect-
ing out-of-band workloads: such workloads could largely interfere
the performance of colocated container instances on the same
host, gaining extra unfair advantages on the system resources
without being charged appropriately. TORPEDO mutates inputs
of OS syscalls and simultaneously monitors the resource con-
sumption of multiple container instances. It uses resource-guided
heuristics to find inputs that maximize the difference in resource
consumption between container instances and resource limits. We
evaluate TORPEDO on widely-used containerization platforms
and demonstrate that it can verify adversarial workloads that
are manually discovered by existing research. More importantly,
TORPEDO identifies several zero-day vulnerabilities that are not
known to the public.

I. INTRODUCTION

Containerization platforms provide environments to isolate

and provision processes running on the same host. Unlike

conventional virtualization techniques maintaining an individual

copy of the operating system (OS) and libraries for each

instance, containers enable much more lightweight and stan-

dalone isolation toward user applications. Container instances

on the same host share the same OS kernel, thus reducing

computing costs by stacking kernels and driving much higher

server efficiencies. To date, container techniques have been

widely adopted in many scenarios including cloud computing,

serverless computing, and edge computing. The value of the

container market is expected to reach $8.2 billion in 2025 [3]

as compared to $762 million in 2016 [64].
Containers employ system-wide isolation enforced by several

kernel mechanisms provided by the host OS. In particular, var-

ious Linux kernel authorization mechanisms (e.g., namespaces

and control groups) and the Linux security modules (SELinux,

AppArmor, etc.) are leveraged to constitute resource isolation

and provision [65]. Despite this spectacular progress, various

real-world attacks have been launched to abuse the shared

computing resources and affect the performance of container

instances collocated with a malicious container [29], [52], [78].

For example, recently-disclosed attacks [29] have shown that

by deliberately triggering system calls or locking up interrupts,

Denial-of-Service (DoS) attacks can be launched toward

colocated containers causing as much as 95% performance

degradation.

*Co-first authors.

Given various attacks conducted on containerization plat-

forms, previous studies reveal that many attacks are derived

from the same root cause by constantly abusing the shared

computing resource provision [29], [78]. The shared resources,

considered as “fairly” allocated across different containers

by the Linux cgroups mechanism, can be abused to starve

the host and other colocated container instances. While many

research works have manually disclosed attack strategies, a

thorough and complete analysis of containerization platforms

on their resource allocation enforcement is still missing in

understanding today’s container security landscape.

In this research, we extend the standard fuzz testing paradigm

to expose provision resource drifting of container instances by

stressing resources via system calls. Particularly, we capture

resources being subtly manipulated by (malicious) containers;

such manipulation can break the resource isolation guarantee

(e.g., enforced by Linux control groups), largely consume

shared system resources, and likely provoke various security

attacks. Compared with existing research, our automated testing-

based framework comprehensively cruises the potential attack

surface of containerization platforms, and can provide counter

examples (test inputs) that can actually trigger the defects.

The process of discovering, debugging, and even fixing the

container vulnerabilities is adequately simplified.

We have implemented the fuzzing framework into a prac-

tical and efficient tool, named TORPEDO, by addressing

multiple domain-specific challenges and incorporating several

optimizations in the container environments. TORPEDO is

an unsupervised coverage-guided fuzzer supporting multiple

containers with arbitrary resource restrictions tested on different

container runtimes. It leverages resource-guided heuristics to

find system call inputs that maximize the discrepancy between

system resource consumption and container resource limitations.

We propose to guide the fuzz testing by combining both

code coverage and system resource consumption as feedback.

We also propose testing oracles, with respect to the system-

level resource allocation guarantees commonly assumed by

the containerization platforms, to identify potential adversarial

workloads.

The proposed workflow is effective and shows promising

results when evaluated with Docker [11] with three different

container runtime settings, including the default runc [10], the

Redhat crun [24], and Google gVisor [12]. TORPEDO success-

fully re-confirms several vulnerabilities that are known to the

community, but identifies several new attacking vectors. Also,

it detects multiple new vulnerabilities concerning violations
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of CPU resource limitation from these popular (commercial)

container components. We also trace the root cause for

identified vulnerabilities in the container implementation, and

investigate the potential security threats. Confirmation with

container developers also receives promising feedback, with

multiple findings have been promptly confirmed and fixed.

The proposed techniques and the developed platform can

be adopted by virtualization technique developers and security

researchers, to provide continuous updates against attackers

with access to the tremendous numbers of virtualization and

cloud services in the real world. To facilitate results verification

and follow-up research, we will release all our erroneous

detection results and a snapshot of TORPEDO.

II. BACKGROUND

To date, many container technologies are available on

the market, including LXC, OpenVZ, Linux-Vserver, and

Docker [11], [13]–[15]. In general, container engines such

as Docker create and manage the lifecycle of containers, and

container runtime is responsible for translating the visibility and

resource restrictions from the user-facing API into directives

for the kernel. There are several existing designs for container

runtimes. Native runtimes perform the necessary setup for

the container, allowing the container to share the host kernel.

Examples include the default runtime packaged with Docker,

runc [10], and the Red Hat crun [24], which is written in C for

setting up the environment before the container process starts.

Sandboxed runtimes introduce a translation layer between the

container and the host kernel, and gVisor [12] is a secure

runtime that reduces the attack space on the host kernel by

implementing a large portion of the syscall interface with

a smaller number of syscalls. At the kernel level, containers

depend on multiple independent Linux kernel components (e.g.,

namespace and cgroups) to enforce isolation among user-space

instances. Particularly, cgroups (i.e., control groups) are the

key features for controlling and limiting the total amount of

system resources for containers. We next discuss the cgroups
mechanism in detail.

A. Linux Control Group

Modern Linux OS features cgroups as a highly flexible and

configurable way to control the dynamic computing resource

allocation, including (CPU) runtime, memory, input/output

(I/O), and network bandwidth. cgroups quantitatively limit

the amount of resources assigned to a container, thus ideally, it

is designed to prevent one or a particular group of containers

from draining all the available computing resources of other

containers or the host machine. Typically, the cgroups
mechanism partitions groups of processes into hierarchical

groups with controlled behaviors, and relies on different

resource controllers (or named as subsystems) to limit, account

for, and isolate various types of system resources.

The control groups mechanism is one keystone constituting

containerization platforms, enforcing both cross-container
isolation and container-to-host isolation on multiple types of

system resources. As mentioned above, cgroups specify the

resource allowance for one or a set of containers. For instance,

by specifying the CPU usage share of one container as 512

and another container as 1024, the latter one is provisioned

to get roughly double amount of CPU time compared to the

first one. Nevertheless, enforced cgroups, none of these two

containers can starve the other one, even if they are competing

the same CPU core. Similarly, cgroups helps to prevent

containers from draining resource over the host machine. The

cpu controller can provide a hard limit on the maximum amount

of resource utilized by a container, by specifying a quota
and period. Each container can only consume up to “quota”

microseconds within each given “period” in microseconds. For

a container set with 50,000 “quota” and 50,000 “period”, it can

consume up to the total CPU cycles of one CPU core. More

importantly, cgroups have an inheritance mechanism, ensuing

that all child processes inherit the exactly same cgroups
attributes from their parent processes, which guarantees that

all child processes will be confined under the same cgroups

policies. Overall, cgroups provide a flexible mechanism

to specify and enforce the resource quota for containers,

smoothly enabling the “pay-as-you-go” scheme for real-world

cloud platforms. More importantly, a correctly designed and

implemented cgroup mechanism shall prevent most cross-

container or container-to-host attack vectors such as Denial-of-

Service (DoS) attacks in the first place.

B. Container Attacks by Abusing Resource Allocation

Despite the encouraging and flexible enforcement provided

by Linux namespaces and cgroups, we have observed various

real-world exploitations toward containerization platforms. In a

multi-tenant environment where multiple containers belonging

to different tenants run on the same physical machine, malicious

containers might turn other co-resident containers or the host

into mal-functional. For instance, a malicious container can

drain most of the CPU computing resources and starve other

containers or even the host OS.

Ideally, the resource consumed by a container is limited by

cgroups. However, previous work [29], [45] demonstrates

that inherited cgroups confinement via process creation cannot

always guarantee consistent and fair resource accounting, and

it is possible to break the resource rein of cgroups. Gao et

al. [29] designed a set of exploiting strategies to generate out-

of-band workloads on another process (in a different cgroup)

on behalf of a constrained original (malicious) process. The

consequence is huge: Gao et al. [29] demonstrated that, by

escaping the resource limit of cgroups, a container can

consume system resources (e.g., CPU) as much as 200× of

its limit, and significantly degrade the performance of other

co-resident containers to only 5%.

Defer Work to the Kernel. The first type of strategy is to

defer or delegate workload to the kernel, as all kernel threads

are attached to the root cgroup. The amount of resources

consumed by those workloads would be counted to the target

kernel thread, instead of the initiating user-space process (i.e.,

the container). The Linux kernel by default runs multiple kernel

threads, including kworker for handling workqueue tasks [1]
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and ksoftirqd for serving softirqs. Also, a container process

can exploit kernel threads as proxies to spawn new processes

(which are still attached to the root cgroup), and thus escape

the resource control. One feasible solution is to exploit the

usermode helper API, which provides a simple interface

for creating a process in the user-space. In both cases, the

corresponding consumed resources would not be limited by

any cgroups.

Deferring Work to Other Process cgroups. The second

type of strategy is to delegate workload to other userspace

processes, various system daemons and services, which are

all attached to other cgroups than a containerized process. For

example, a malicious container can exploit multiple system

processes (e.g., systemd) maintained by the Linux server for

purposes like process management, system information logging,

debugging, or container engine processes, which are required

to run on the host to support and manage container instances.

The corresponding consumed resources would not be charged

to the initiating process (i.e., malicious container), and thus

the cgroups mechanism can be escaped.

However, we consider the existing research has never fulfilled

its potential by conducting a systematic and comprehensive

study on resource allocation. Previous works largely rely on

manual analysis and thus can only find limited exploiting

methods. We thus intend to develop a system to automatically

uncover those vulnerabilities in containerization platforms.

III. PROBLEM FORMULATION AND APPROACH

In this section, we formulate the research problem and

discuss the opportunities to address it with fuzzing.

A. Problem Formulation

In general, containerization platforms are designed to deliver

a confined provision for container instances, in terms of both

static and dynamic computing resources. Container instances

should not go over a pre-defined amount of static computing

resources. More importantly, the provision of runtime resources

should not be changed no matter how the resource is accessed

by other container instances; violation of such provision may

be due to bugs or inherent design limits, revealing chances of

conducting exploitations.

Threat Model. We consider standard multi-tenant environ-

ments where multiple containers belonging to different tenants

share the same physical machine. All containers are confined

with proper resource isolation and thus can only consume

limited resources (e.g., CPU cycles, memory, etc.). The attacker

can control one or more containers by using the provided

service normally and legitimately. The malicious container

then attempts to cause system-wide impacts by consuming

more resources than allocated.

Formulation. The aforementioned research problem is formu-

lated as below. Let H represent a physical machine which

hosts n container instances C = c1, c2, . . . , cn, running with

different containerization platform combinations (denoted as

P = p1, p2, . . . , ps). Once deployed, remote users can com-

municate with the deployed application by constantly feeding

inputs and imposing one of the workloadsW = w1, w2, . . . , wt.

To prevent inter-container exploitation, the container manager

enforces the following holistic requirement:

∀ci ∈ C, ∀wj ∈ W, ∀pk ∈ P : Ri,j,k ≤ Alloc(ci, wj , pk) (1)

where function Alloc denotes the amount of computing

resources (e.g., CPU, Memory, I/O bandwidth) provisioned

for a container instance ci, and Ri,j,k denotes the total

amount of resources consumed by that container. In general,

this requirement specifies that a container should not be

capable of consuming more resources than allocated by the

containerization platforms.

The above formulation indicates the supposed resource

consumption by each container. However, it is challenging

to monitor out-of-band workloads for each container, as many

processes are shared among all containers. Thus, we can make

a generalization about the total resource utilization of the

host (RH ) for an arbitrary set of containerized workloads.

Particularly, the total resource consumed by the host should be

less than the summation of allocated resources of all containers.

RH ≤
∑

Alloc(ci, wi, pk) (2)

Although satisfying the above requirement guarantees a fair

resource provision, this requirement is still too strict for most

real-world cases. Each OS has some amount of unavoidable

overhead associated with creating and executing a containerized

workload. Therefore, we use ε as a small drifting and refine

Constraint 2 such that not only containerization platforms with

strict enforcement are deemed safe, but also with small changes

ε are safe:

RH + ε ≤
∑

Alloc(ci, wj , pk) (3)

where ε can be configured by the users.

B. Resource-Guided Fuzz Testing

Feedback-driven fuzz testing has been widely used to

automatically generate tests to detect software faults [80]. The

strength of feedback-driven fuzz testing lies in its capability

to benefit from the “genetic algorithm” to gradually identify

and retain inputs that can maximize the fuzzing objective. We

leverage the fuzzing scheme to analyze container instances

running on the same host. Overall, while applications within

different containers usually have different functionalities, the

container instances themselves, once configured and launched,

should always be confined by the specified resource provision.

In that sense, if one or more containers exhibit observable

violations, then it means that workloads exposed over containers

provoke vulnerabilities of the tested, which should be remedied

by developers.

We aim to record the violations w.r.t. the testing oracle

measurements observed over container instance executions. For

each iteration of testing, it mutates the test inputs to guide

the fuzzer in finding inputs that maximize predefined feedback

(in this case it is the resource allocation driftings). In general,
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Fig. 1: Overview of the proposed approach.

feedback-driven approaches form a search campaign inspired

by evolutionary biology, which aims to gradually converge test

cases with high chances of success. Hence, the input creation

and mutation would consider the collected feedback. It defines

the requirement in this research as follows:

max
wm

δ = RH −
∑

Alloc(ci, wm, pk) (4)

where δ denotes the difference of allocated resources between

the allocated and the real consumed. A large δ indicates a

higher chance of conducting cgroup escape exploitations. As

shown in Equation 4, we compute the resource allocation

differences for each mutated input: inputs will be kept in a

queue for further mutation and usage in case it leads to new

(interesting) differences in the tested container instances.

IV. TORPEDO DESIGN

The goal of TORPEDO is to develop an unsupervised

coverage-guided fuzzer supporting multiple containers to be

tested on different container runtimes in parallel. Figure 1

depicts a bird’s eye view. It is similar to SYZKALLER, which

fuzzes pools of virtual machines, but is actually significantly

different from it. Instead of spawning VM, TORPEDO creates

containers with arbitrary resource restrictions and runtimes

(e.g., runC, crun, gVisor) directly, thus reducing the amount of

resource overhead incurred by additional isolation mechanisms

in VMs.

For the general architecture, a manager binary serves as

an entrypoint for the fuzzer and a central collection point for

the program corpus and execution statistics. Each manager

spawns a number of fuzzer processes and communicates

with the fuzzers over gRPC. The fuzzer binary then runs

inside a container, and is responsible for generating and

manipulating programs through various lifetime stages. It

repeatedly mutates programs to determine variants that generate

new coverage. The executor then executes a serialized program

while collecting coverage information about each call. It

implements a translation layer to forward commands directly

Algorithm 1 Fuzz testing. Report all discrepant workloads

across container instances C starting from a corpus I . R denotes

the resource (e.g., CPU cycles) for testing.

1: function TORPEDO(I, C, R)

2: S ← ∅ � discrepant workload set

3: O ← CONFIGCONTAINER(C)

4: for 1 ... MAX ITER do
5: i← POPQUEUE(I)

6: i∗ ← MUTATE(i)
7: W ← GENWORKLOAD(i∗)

8: R ← ∅ � resources allocated in containers

9: for coni, wi ∈ (C,W) do
10: r ← RUN(coni, wi)

11: R ← R⋃{r}
12: if NEWPATTERN(R) then
13: I ← I⋃{i∗} � record i∗ that exposes new

patterns

14: for oracle ∈ O do
15: if VIOLATE(R, oracle) then
16: S ← S⋃{i∗} � record i∗ that violates an

oracle

17: return S

onto the host and passes logs from the fuzzer back for analysis

(i.e., between the fuzzer and executors).

TORPEDO contains an observer, which is a thread of

execution responsible for delegating workloads to executors

and examining the results of each execution. It collects a wide

spectrum of system information, including various resources

consumed by a container, the utilization of system/kernel

processes, and the resource consumed by containerization

components. For guiding adversarial program generation to

identify out-of-band workload, TORPEDO leverage an extra

library, Oracle(s), that contains the necessary logic for the

task with respect to a particular resource. With Oracles,

TORPEDO combines both code coverage information and

resource utilization to guide the fuzzing process.

Algorithm 1 specifies the testing workflow. Overall, our

approach depicts a fuzz testing procedure. We start by taking

a set of container instances deployed on the same host as

the testing target. We also require users to provide a set of

initial inputs I as the fuzz testing seeds (see Sec. V on the

construction of I in our research). Containers C are configured

w.r.t. the particular resource R and yields the corresponding

testing oracle set O (line 3). We then iterate the fuzz testing

process for MAX ITER times and collect all the findings. For

each iteration, n inputs are fetched from the input queue (line

5), and we mutate the fetched input set i. Then, the mutated

i∗ will be used to generate a set of workload W over each

container instance (Sec. IV-A). Each container coni will be

executed with its assigned workload wi for a reasonable amount

of time (Sec. IV-B), and we collect the targeted resource

computation during this phase (line 9; Sec. IV-C). In case

the collected computing resource consumption reveals certain
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unknown patterns (e.g., a larger δ in Equation 3; see Sec. IV-D

for elaboration), the mutated input i∗ is considered interesting

and will be kept in the input queue for further usage (line 12).

More importantly, once the provoked resource usage violates

any testing oracle for the checked property (line 14), we keep

this input as “discrepant input”. The entire set of discrepant

inputs will be returned to users (e.g., container developers) for

confirmation and bug fix of container runtime systems.

Our testing campaign subsumes several layers hidden within

the container “runtime” (see the three layers in the “Physical

Machine” box of Figure 1). In addition, it is worth noting that

while we primarily detect resource violation vulnerabilities (out-
of-band workloads), crashes hidden in the container runtime

systems and libraries could also be exposed, since the proposed

approach forms a typical fuzz testing toward the container

infrastructure. Existing research has (manually) identified

vulnerabilities of this category [18], [42], and our evaluation

successfully reveals several crashes in the Docker runtime

system (see Sec. VI). In the rest of this section, we elaborate

on each step in detail.

A. Generating Workload

SYZKALLER does not natively support the direct ingestion

of seed files for use in corpus construction. Instead, it prefers

to generate programs using a nondeterministic process that may

draw on a corpus of coverage information, if one is available.

For more efficient testing (especially reproducing existing

exploits), we envision that TORPEDO is capable of ingesting

seed files directly from an operator and using these to populate

an initial corpus. Given an input set i∗, TORPEDO prepares a set

of workload W that will be used by each container instance. It

then passes through a serialized execution request to a prepared

container, and distributes many heterogeneous workloads in

parallel. Since the majority of generated programs are short

(10 ms or less) and may not finish at the same time, TORPEDO

repeatedly runs those workloads and deploys a synchronization

mechanism (discussed in Section IV-C) to ensure an efficient

fuzzing process.

B. Interacting with the Container Runtime

In the native SYZKALLER design, workloads are executed

via a virtual machine that shields the syz-manager binary

(which serves as an entrypoint for the fuzzer and a central

collection point for the program corpus and execution statistics)

from kernel crashes. While TORPEDO would also benefit from

such a strategy, we also note that VMs impose a nontrivial

performance overhead and may obscure otherwise relevant

observations. When specifically considering sandboxed and

virtualized runtimes, which need to be analyzed closely for

adversarial utilization on the host, adding an additional layer

of VM translation will complicate detangling measurements

and slow down the entire fuzzing process. Thus, we choose to

execute all TORPEDO processes on the same host.

We further identify and package the smallest set of

SYZKALLER components into a container to maintain the

existing program execution workflow. Particularly, we package

the syz-executor process (a C++ binary that reads in a serialized

program and executes it while collecting coverage information

about each call) and a simple entrypoint binary to maintain API

compatibility and allow for connection debugging. Additional

features of this entrypoint will be discussed in Section IV-C.

These two applications, when combined, form a container

image for fuzzing adversarial workloads.

C. Collecting Provisioned Computing Resources

Since the goal of TORPEDO is to identify out-of-band
workloads that will violate existing cgroup limitations, it

must accurately capture resource utilization measurements. To

do so, the first step is to observe the state of the system

while the program(s) under examination are running. Ideally,

the observation window would completely overlap with the

window of execution to capture an accurate measurement. This

poses an issue when the programs under testing have different

running times as a result of variations in the algorithmic

complexity of the underlying syscalls or simply becoming

blocked. Furthermore, when multiple containers are running

in parallel, we note that all the programs under test will

collectively contribute to the resource utilization of the host.

Thus, for accurately measuring multiple fuzzing processes in

parallel, we completely synchronize the program execution

window and extend the execution time for each program to

become comparable. We choose to have the container entrypoint

binary be responsible for this synchronization. Basically we

keep running the workloads in a loop until it reaches the

threshold, and report the number of executions and average

execution time (obtained through Unix NS timestamps). This

way, TORPEDO ensures that all parallel executor containers

terminate their execution at or before a specified timestamp.

Observer. To coordinate workload execution and measurement

taking, we introduce the concept of the observer. The observer

is a thread of execution responsible for delegating workloads to

executors, signaling executors to start, and examining the results

of each execution. These “observations” provide feedback

used to guide program generation and mutation, as well as

identify workloads that are likely adversarial. The observer has

access to all feedback results and can use them to immediately

motivate changes to each program for the following round

(Section IV-D). Additionally, the observer is responsible for

logging this information for later analysis (e.g., identifying

adversarial workloads).

D. Constituting Fuzz Testing Feedback

TORPEDO must consider two feedback mechanisms when

making decisions: code coverage and resource utilization. Code

coverage constitutes a simple “binary feedback” mechanism;

a given measurement either contains some new coverage or

does not. A program that generates more new coverage is

strictly ”better” than one that does not. However, the same

relationship does not necessarily hold for resource utilization:

a fuzzing input that generates more CPU utilization than its

predecessor may not strictly be more adversarial; it could

simply spend less time blocked. For designing TORPEDO,
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we note that adversarial workloads typically exhibit some

amount of “workload amplification”, by which the total

amount of resources consumed by the host is increased some

factor beyond what the adversarial program is consuming

itself. This indicates that observing more overall resource

utilization is potentially indicative of an out-of-band workload,

especially when resource limitations have been placed on the

workloads that should restrict them. The observer thread is

then responsible for collecting and analyzing this information

to guide the generation of adversarial programs.
Furthermore, we split the process of guiding program

generation into two separate problems. The first concerns

ranking workloads with respect to ”how likely” they are to

become adversarial. The second concerns identifying with some

certainty that a workload has become adversarial. The first

functionality is necessary to motivate program mutation while

evaluation is ongoing for a particular batch, and the second is

necessary for the ultimate goal of identifying programs that

violate one or more resource oracles. We conceive of an oracle

library that contains the necessary logic for both of these tasks

with respect to a particular resource R. More formally, an

oracle library must support the following operations.

1) Score a workload. A higher score indicates the workload

is more indicative of adversarial behavior.

2) Flag a workload. If the flag is thrown, the oracle believes

the workload violates one or more resource isolation

boundaries.

The question remains of how to combine oracle and code

coverage feedback in a meaningful way. Fundamentally, these

two mechanisms are incompatible. Code coverage is collected

per individual syscall in a program, whereas an oracle score

takes into account the behavior of all programs and the host.

TORPEDO solves this problem by considering both mechanisms

at separate granularity levels. Particularly, code coverage is

incorporated at the individual program level, and resource

utilization at the “set of programs” level. In this way, the current

set of all containerized workloads is considered separately from

the individual workloads that comprise the set.

V. IMPLEMENTATION

A. Instrumenting SYZKALLER

The OS kernel fuzzing framework SYZKALLER [32], [56]

takes a set of system call traces (each set is called a “corpus”)

as its seed inputs for fuzzing. Given a corpus of system call

traces, SYZKALLER perturbs input values of system calls and

also shuffles system calls on the trace to interact with the

OS kernel. SYZKALLER can also generate new traces during

the fuzzing campaign. It manifests a standard feedback driven

grey-box fuzzing setting guided by kernel code coverage. A

trace is kept for further mutations if the executing system calls

on the trace induces new coverage of the OS kernel; otherwise,

it is discarded. In TORPEDO, we instrument SYZKALLER and

take the resource consumption difference among container

instances as another feedback to guide fuzzing. The whole

implementation contains 1,500+ Go codes as well as non-trivial

C/C++ modifications.

Replacing Virtual Machines with Containers. We begin by

implementing a VM translation layer that creates processes

on the host and passes logs from the fuzzer back for analysis.

Execution requests are passed to containers via IPC pipes

and results are returned using the same mechanism. We

also introduce a small library to support creating containers

with arbitrary resource restrictions and runtimes. Rather than

directly interacting with the Docker daemon over HTTP,

we implement a wrapper around the Docker command line

interface. This ensures that TORPEDO is capable of capturing

potential vulnerabilities created by the interaction between

the CLI and the Docker Daemon, as well as compatible with

equivalent container engines like “podman”, which use the

same CLI commands. Each container is restricted via cgroup

constraints to a single, unique physical core, which makes it

easier to identify when a containerized workload has “escaped”

to another core (i.e., breaking the cpuset cgroup).

Algorithm 2 Observe Execution. Each round lasts for T
seconds. R represents some computing resource the observer

should monitor.

1: function OBSERVER(T , R)

2: RoundNum← 0
3: Workloads← ∅

4: RoundScore← 0
5: INITIALIZEEXECUTORS(E)

6: for ∞ do
7: W ← GETPROGRAMS(W , RoundScore, R)

8: StopT ime← CurrentT ime+ T
9: for E ∈ Executor do

10: E .stop← StopT ime
11: E .program← w (w ∈ W)

12: SIGNAL(E)

13: WAITFORALLEXECUTORS(E) � Wait for all

executors to signal they are ready

14: SIGNALALLEXECUTORS(E)

15: RoundScore← TAKEMEASUREMENT(T , R) �
returns after T seconds

16: LOGROUNDRESULTS(RoundScore)

17: RoundNum++

18:

19: function EXECUTOR(O) � Each executor maintains a

reference to the observer

20: program← ∅

21: stop← ∅

22: for ∞ do
23: WAITFORSIGNAL()

24: PREPARETOEXECUTE(program) � Create a

container and serialize execute request

25: SIGNALOBSERVER(O)

26: WAITFORSIGNAL()

27: EXECUTE(program, stop)

Implementing the Observer. In the SYZKALLER native

design, one thread is created for each executor and all procs
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execute independently. We modify each thread and coordinate

the observer with any number of executors using algorithm 2.

Basically, this algorithm uses a two-stage latching procedure to

distribute programs and prime each executor (each executor is

distributed with one program, as Line 11), then starts the

execution window to align with a pre-defined number of

resource measurements.

The observer divides execution periods into rounds of time

T duration each. With preliminary exploration, we observe

that a short interval (T ) is more susceptible to being disrupted

by temporary “noise spikes” from the host (e.g., cron jobs,

sudden arrival of network packets, system logging events, etc),

whereas longer intervals produce more useful measurements

but significantly reduce program throughput. We choose values

in the range of a few full seconds, often between three and

five, to achieve a fair balance of throughput and precision.

Implementing Oracles. In anticipation of fuzzing for adver-

sarial CPU utilization, we create an oracle framework suitable

for collecting both per-process and per-core utilization measure-

ments (Line 15 of algorithm 2, TakeMeasurements). The former

can be easily collected from the PROC file system, specifically

through ‘/proc/stat‘. This pseudofile exposes information about

how much time each CPU core has spent in various categories,

including userspace, kernel space, and idling.

Collecting per process CPU utilization is more difficult, but

can provide equally useful insights. Tracking the usage of

individual processes is particularly helpful in understanding

where out-of-band workloads are being created and tracking

their efficacy. To implement this, we fork an existing Golang

library [7] with a wrapper for the top(1) command. We filter

this output by selecting common categories of interest, such

as ‘docker’, ‘kworker’ threads, ‘kauditd’, ‘systemd-journal’,

and miscellaneous kernel threads (most of them are reported

in [29]).

The implementation of top on Linux has a number of hidden

idiosyncrasies that make it difficult for our purpose. First, even

when invoked with a custom duration between updates, top has

an unavoidable “warm up time” to generate its first frame that

produces inaccurate results. We modify the Linux wrapper for

top to discard these warm-up measurements. Secondly, top is

incapable of reporting CPU utilization by processes that begin

or end during the time between frames. For our purposes, this

only makes it suitable for measuring CPU utilization from

daemons or otherwise long-lived processes. If a program were

to trigger the creation of many short lived kernel threads,

TORPEDO would still observe it from the broader per-core

CPU usage measurement. The combination of these two metrics

gives an excellent “snapshot” of CPU allocation during a time

period and can easily be analyzed to determine adversarial

workloads.

B. Leveraging the Oracle Library

As in Section IV-D, we implement each oracle to support

two objectives. The first concerns scoring workload resource

utilization to serve as a feedback mechanism, and the second

concerns identifying adversarial workloads based on a set of

heuristics.

Scoring Workloads. As in SYZKALLER, candidate programs

are evaluated for new code coverage patterns and only accepted

for triage if they are judged to be interesting. Each batch

of programs is subjected to many repeated mutations in an

attempt to motivate the generation of adversarial programs.

We conceive of two states that a set of programs may be in

at any time; “mutation”, where each program in the set is

perturbed in an attempt to generate more adversarial resource

utilization, and “confirm”, where programs are rerun to confirm

some interesting observation exists and was not a result of

system noise. The Oracle score is used to determine when a

mutation has achieved some meaningful change and should

be confirmed as a new baseline for the batch (Algorithm 2,

Line 15, RoundScore, used to GetPrograms on line 7). After

some amount of time without a meaningful improvement, the

Oracle determines the batch has been exhausted and calls for

new programs.

Combining Coverage and Utilization Feedback. As the

primary assumption behind most fuzzing tools, high code

coverage generally means that it is more likely for a test

to uncover a bug. Nevertheless, this might not be sufficient

for our focus, aiming at finding bugs enabling adversarial

workloads. Thus, TORPEDO needs to combine both code

coverage information and system utilization feedback to guide

the fuzzing process. This is not straightforward, because

code overage comes from an individual program but system

utilization comes from all programs. To this end, our design

splits the SYZKALLER program state machine into two separate

state machines: one for each program and the other for the

whole batch of programs. Figure 2 depicts the result of dividing

relevant states between the level of an individual program and

a batch of programs. The program state machine is focused on

coverage collection: it discards programs that are not interesting

and ensures to keep getting new traces to test. The batch state

machine is focused on the system utilization: it decides how

to mutate programs. Thus, programs that do not generate new

coverage are typically rejected before they spend too much

time being mutated. Also, only the set of mutated workloads

that generate the most adversarial resource usage are recorded

into the corpus.

To reduce the impact of system noise (e.g., generated by

mutation operations), we implement the “shuffle” state, where

individual programs are shuffled between cores but the order

of syscalls in each trace remains unchanged. This helps to

reduce false positives from the scenarios where system noise

is concentrated on a subset of cores and is unrelated to the

program under test.

Flagging Workloads. The Observer could easily apply an

Oracle’s flagging heuristic to each observation as it becomes

available, although as true violations are likely to be rare, this

would reduce overall program throughput. Instead, TORPEDO

uses this Oracle functionality to parse through log files from

each round and isolate small numbers of adversarial programs
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(a) Program State Machine. (b) Batch State Machine.
Fig. 2: TORPEDO State Machines

asynchronously from program execution. If the adversarial pro-

gram is indeed correlated with a higher score from the Oracle’s

scoring functionality, then we expect the adversarial program

to be retained for the remainder of the batch, which serves

to confirm the program is the cause of whatever adversarial

behavior has been flagged. Once identified, TORPEDO leverages

a tool-assisted minimization workflow to automatically isolate

the adversarial programs (i.e., a sequence of system calls)

for further analysis. Basically, we systematically remove calls

from the program until we obtain the smallest set of calls that

result in the originally observed oracle violations. After that,

we further manually confirm and isolate the vulnerabilities

through kernel trace debugging.

VI. EVALUATION

A. Research Questions

TORPEDO is designed to discover vulnerabilities existed

in containerization components, which can be exploited to

generate out-of-band workloads and escape the resource limit

of cgroups. While many aspects of the tool are novel, much of

the design is a natural extension of the existing SYZKALLER

framework. Also, we source much of TORPEDO’s initial testing

corpus directly from a selection of seeds from Moonshine [56],

which is another SYZKALLER extension project concerned with

improving the quality of seeds distilled from the framework

seeds. Particularly, we attempt to explore that (1) Can TORPEDO

discover new vulnerabilities and how efficient is that? (2)

Are there discrepancies among different implementations of

container components (e.g., runtime)? (3) How is TORPEDO’s

code coverage mechanism?

B. Environment Setups

Multiple popular container implementations are commonly

used in the real world. This paper aims at presenting an in-depth

understanding of today’s container security landscape, where

we will leverage TORPEDO to test three popular container

runtime implementations: runc, crun, and gVisor.

TORPEDO is designed as a blackbox testing framework

that does not rely on any implementation details of the

underlying container implementation. In principle, the proposed

technique can be smoothly migrated to test different container

infrastructure implementations. We consider this as a big

advantage, compared to existing container security analysis

techniques where heavyweight program analysis methods are

conducted [57]. The following paragraphs discuss each of the

container runtimes we target in detail.

runc. This runtime is used in a typical container execution

environment (usually as the default container runtime), where

the native Linux together with runc [10] are executed directly

on top of the hardware. runc denotes a low-level container

runtime library mainly supporting “high-level” container engine

(e.g. Docker) to spawn and run containers. For instance, the

Docker engine leverages runc to handle tasks such as running

a container, attaching a process to an existing container, and

so on.

crun. Much like runc [24], crun is a bare-metal runtime

that interfaces directly with Linux to create a containerized

process. Unlike runc, which is written in Golang, crun is written

entirely in C. The project authors advertise that crun functions

identically to runc, but due to its implementation, is faster

and more memory efficient. Also, the crun is completely

compatible with Docker.

gVisor. This runtime is indicative of another popular container

execution environment, where the gVisor (runsc) process

serves as a secure sandbox for the untrusted containerized

code. gVisor functions as a userspace kernel (comparable

to LibOS [9]) with a subtle difference. gVisor essentially

provides an extra layer between the container and host OS

kernel, intercepting system calls made by the containerized

applications. To date, gVisor has successfully supported 211

out of 319 x86-64 Linux system calls, by using only 64 system

calls on the host system [12].

For the duration of our experiments, we fix TORPEDO to

use the Docker ecosystem with a selected container runtime.

By rotating adversarial programs between different runtimes,

TORPEDO empowers testers to quickly identify discrepancies

between each implementation, as well as expose underlying

OS bugs or higher-level bugs in Docker.

C. Evaluation Procedure

For each fuzzer execution, we choose a small number of

Moonshine seeds and use TORPEDO’s seed ingestion workflow

to enqueue these as candidate programs. We allow the fuzzer

to run unattended and review the execution logs after all seeds

have been exhausted. The corpus of coverage information is

purged between each fuzzer invocation, which serves to prevent

adversarial system call traces from being continually injected

into future programs and preventing new, interesting findings

from being revealed.

Each execution encompasses some number of rounds, each

of which produces a detailed log file of resource utilization

during the period. These log files are batched and passed over

by an automated script that examines each round for resource

pattern violations as defined by one or more Oracles. This work

focuses primarily on the results from a CPU Oracle, which

uses the heuristics given in Table I. Specific constants for each
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TABLE I: TORPEDO CPU Oracle Heuristics

Heuristic Notes
Fuzzing core CPU utilization Expect above some threshold

Idle core CPU utilization Expect below some threshold
Total CPU utilization Expect below some threshold

System process CPU utilization Expect below some threshold

heuristic vary according to test parameters, and specifically the

selected container runtime and amount of parallelism.

Due to the relationship between patterns of adversarial CPU

utilization and an increased score from the CPU Oracle, we

assume that the adversarial properties of a program will be

preserved by TORPEDO during operation and will exhibit

the same patterns over many subsequent rounds. Therefore,

for a given batch of programs, any commonalities between

programs flagged by the Oracle for similar resource violations

can be extracted and minimized by a human operator with little

difficulty. We consider any set of system call traces that creates

an adversarial workload when isolated and run independently

of the TORPEDO framework to be a discovered vulnerability

for the purposes of evaluation.

All tests were executed on a machine equipped with an AMD

Ryzen 3600X with 12 cores and 16 gigabytes of RAM running

Linux kernel version 5.8 (Ubuntu 20). We run 3 containers in

parallel: each is pinned to one core and restricted with 100%

CPU utilization of one core, using the cpusets and cpu
controllers following [29]. For the fuzzing process, each round

lasts 5 seconds, and multiple batches (each typically contains

between 30 and 50 rounds) are conducted. The specific number

depends on whether the seed is interesting or not.

D. Summary of Identified Vulnerabilities

Table II presents a summary of our fuzzing results. We

also report a computed “amplification factor” as [29], which

defines the difference between the CPU utilization measured

on the container cgroup (via docker stat) and the actual

system utilization. Over the course of our testing, TORPEDO

identifies three new vulnerabilities concerning CPU utilization

with different attack vectors for baremetal runtimes (e.g., runc

and crun). The first involves a technique that exploits the

kernel module loading system to create processes outside the

cgroup of the caller. The second allows a privileged container to

directly place work on a kernel workqueue. The third involves

manipulating a container into a state that will cause the Docker

daemon to expend significant resources when the container is

reclaimed by the system. Also, sandbox runtime incurs less

problems compared with baremetal runtimes. To the best of our

knowledge, these vulnerabilities are not currently documented

in the literature.

TORPEDO also identifies several new attacking vectors

belonging to known vulnerability categories, such as several

new ways to trigger coredump, which can be exploited to

amplify more than 200x workloads [29]. Also, it identifies

bugs that can cause container crashes on gVisor, and another

type of problems causing unwanted seccomp logs on crun.

Both were confirmed and fixed by the developers [5], [8].

Based on the breadth of these findings, we conclude that

TORPEDO is capable of identifying both known and new

vulnerabilities. Note that the SYZKALLER authors have already

spent some time fuzzing gVisor (not through a container

interface). TORPEDO can still uncover new bugs. A detailed

discussion of these findings is presented in Section VII.

E. Comparison of Code Coverage and Program Throughput

While TORPEDO and SYZKALLER are designed for different

purposes with a different feedback collecting mechanism, the

code coverage mechanism is similar. In general, SYZKALLER is

capable of collecting much more coverage than TORPEDO over

a given time delta, as all components execute asynchronously.

Furthermore, SYZKALLER can more quickly screen out candi-

date programs that do not produce new coverage. TORPEDO

is fundamentally slowed by the nature of its observation

mechanisms, which requires both expensive synchronization

and repetition. We run TORPEDO using different round times

(e.g., 3 and 5 seconds) for 16 hours. We collect two metrics

from each experiment: the number of executed programs and

the amount of coverage generated. For ease of comparison, we

choose to fuzz gVisor, which does not allow granular coverage

collection. The “Coverage” refers to the number of unique

combinations of syscall number and error code.

We observe that TORPEDO is magnitudes slower at collecting

coverage than stock SYZKALLER. For example, TORPEDO with

3s rounds takes about 10 hours to reach a similar coverage

as SYZKALLER for fuzzing one hour on our testbed. This is

directly related to the difference in the number of programs

executed per time delta. SYZKALLER executes 20,000 programs

in less than an hour, whereas TORPEDO takes nearly six hours.

To some extent, this gap is also exacerbated by differences in

the coverage collection algorithm. SYZKALLER requires at least

one program execution per syscall in a given candidate program

to confirm coverage, whereas TORPEDO examines coverage

for each syscall in a given program at once. In this respect,

TORPEDO is marginally more efficient than SYZKALLER.

However, after running TORPEDO for enough time, it can

achieve similar coverage. While it is a magnitude slower

than SYZKALLER at accumulating coverage, this downtime is

necessary to collect additional feedback that allows TORPEDO

to identify more bugs than kernel crashes.

VII. DISCUSSION

A. Confirmation of Existing Resource Vulnerabilities

Over the course of testing, TORPEDO independently recon-

firms all vulnerabilities already known to the community [29].

For example, the tool can identify calls flushing data from

containerized programs to a TTY on the host, which causes

additional utilization on dockerd and containerd. Also, the

kernel core-dump mechanism creates out-of-band workload in

userspace for each core dump produced by a containerized

process. Basically, the core-dump code in the kernel invokes

a user-space application via the usermode helper API. The

resource consumed by the user-space application will be

charged to the kernel, instead of the initiating container. This
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TABLE II: Summary of Uncovered Vulnerabilities

Concerned syscall Runtimes Attack vector Amplification factor Notes
socket runc, crun modprobe via usermodehelper 120x ERRNO 93, 94, 97

unshare runc, crun kworker queue 2x CLONE NETNS, requires NET ADMIN
mkdir runc, crun docker daemon N/A reclaiming container stresses dockerd

mount and others crun seccomp unwanted logs 2.3x any usage
rt sigreturn runc, crun coredump via SIGSEGV 200x any usage

rseq runc, crun coredump via SIGSEGV 200x invalid arguments
fallocate, ftruncate runc, crun coredump via SIGXFSZ 200x argument exceeds max file size

open gVisor invalid argument N/A container crash

can amplify the workload more than 200x. Although the

attacking vector is known, TORPEDO is still able to disclose

several system calls with particular usages (shown in Table II)

tripping the core-dump mechanisms.

B. Case Study: sockets

TORPEDO observes consistent workload placed on non-

executor cores when programs contained certain socket related

calls, which means that both cpu and cpuset cgroups are

escaped. Through tool-assisted minimization, we discover

that the socket syscall produces adversarial behavior. An

investigation into the implementation of socket(2) by the kernel

revealed a new attack vector exploiting the kernel module hot-

loading mechanism. In particular, when a process creates a

socket, it can specify a wealth of options including socket type,

protocol, and address family. Some of these options, however,

are invalid in certain combinations, or when the kernel has

not been compiled to support them. Frequently, specific socket

implementations are compiled as modules. When the kernel

receives a request for a socket option it understands but has no

implementation for, it will attempt to load a module from disk

by means of the modprobe(8) tool. On success, this module is

loaded into kernel memory for the remainder of execution. On

failure, an error is returned to the caller. The modprobe(8) tool

is invoked in userspace via the problematic usermode helper

API, which changes the invoked program to the kernel’s cgroup

as part of execution [29].

Repeated requests from userspace for a socket that triggers

an unsuccessful module hot-load create a significant out-of-

band workload in userspace. With a reasonably optimized

single threaded implementation, we find that an adversarial

container allocated just 0.2% of the CPU on our testbed can

cause an overall system utilization of 10%. This corresponds

to an amplification factor of close to 120x. Also, TORPEDO

discovered several variations of arguments to socket(2) that

would trigger the vulnerability, corresponding to errno 93, 94

and 97 respectively.

C. Case Study: unshare

TORPEDO observes a significant spike in kthread utiliza-

tion when repeated invoking unshare(CLONE NETNS) in

privileged containers (i.e., executing unshare(2) on the NET

namespace), which directly correlates to the creation of a

work item on a kernel work queue. The adversarial effects of

unshare(2) have already been noted with respect to increasing

container startup time [55], as the creation of a new net names-

pace requires holding a global lock [4]. We also demonstrate

that it can be exploited to generate adversarial out-of-band

TABLE III: dockerd utilization per number of directories

Number of dirs dockerd utilization (percent of entire CPU)
20k 15%
40k 24%

100k 25%

workloads to consume extra CPU utilization. A naive program

on our testbed can cause an amplification factor of more than

2x. Also, a large amount of system memory is consumed by

the unsharing processes during the test.

D. Case Study: file systems

TORPEDO consistently observes increased utilization from

the docker daemon when test programs contained calls to

mkdir(2). Particularly, this behavior is correlated to the period

where the container is torn down. Subsequent experiments with

destroying containers that contain many directories yielded the

observations in Table III. On our testbed, dockerd committed

three threads to tear down a container with many directories,

leading to an out-of-band workload of 25% with 100k dirs. This

workload persisted linearly with an increase in the number of

directories in the container: 40k directories took approximately

two seconds, but 100k directories took far longer. We note that

the notion of an “amplification factor” does not make sense for

this vulnerability, as the process that “caused” the utilization

is no longer running when the workload manifests.

Troublingly, this workload is still out of band, as restricting

the CPU, I/O or PID limitations on the container does not

limit this workload. We conceive of a potential attack whereby

a malicious user creates many such containers that contain

millions of directories across a series of hosts. These “landmine”

containers are relatively harmless until the user allows the

container engine to reclaim them, at which time the docker

daemon will degrade the performance of all workloads running

on the host until reclamation is complete. To the best of our

knowledge, this is the first potential attack that exploits the

container teardown process to escape cgroup limitations.

E. Bugs

Through the course of testing, TORPEDO discovers several

bugs in the crun and gVisor runtimes respectively. While

fuzzing crun, TORPEDO identified periodic utilization spikes on

the Linux audit subsystem (kauditd and journald) from seem-

ingly unrelated program traces. The examination determines

these spikes occurred from overzealous logging stemming from

crun’s interpretation of the Docker default seccomp profile [8].

It can cause an amplification factor about 2.3x. This bug was

promptly addressed by the crun team.
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While fuzzing gVisor, TORPEDO repeatedly detects a con-

tainer crash across many different seeds. During minimization,

a commonality is unearthed concerning the open(2) syscall and

a specific argument bitfield combination. This would cause

gVisor to translate a syscall not allowed by its own seccomp

profile, and the container would be terminated [5]. This bug

was recognized by the gVisor team and promptly fixed.

F. Future Work

While this work mainly concentrates on finding vulnerabili-

ties related to the CPU resource, TORPEDO can be extended to

uncover potential issues in other cgroups subsystems (e.g.,

memory). We will explore this direction in our future work.

VIII. RELATED WORK

In this section, we review existing research efforts that inspire

our work. We mainly focus on the following areas:

Container Security. Containers typically have better perfor-

mance than traditional VMs [27], [54] and thus can support

real-time applications [62]. Meanwhile, container security

has also received much attention. Several previous research

efforts, including Gupta [34], Bui [18], and Grattafiori et

al. [33], have presented a brief analysis of Docker security

in terms of the isolation and corresponding kernel security

mechanisms. Particularly, it has been demonstrated that some

of the existing exploits can successfully launch attacks from

inside the container [50]. Gao et al. [28], [30] also investigated

the information leakage problem and its security implications in

Linux containers caused by problems in namespaces. Multiple

works have also been proposed to secure containers. Lei

et al. proposed to reduce the number of available system

calls to applications [48]. Sun et al. [65] proposed new

security namespaces enabling autonomous security control for

containers, and Arnautov et al. [16] secured Linux containers

using Intel SGX.

In terms of the security problems in resource control, Gao

et al. [29], combined with other previous research [45], have

disclosed that particular workloads can generate extra out-
of-band workloads than the limit of cgroups, which can

further slow down the container [46], [88]. Yang et al. further

demonstrated that the shared kernel variables and data structure

can cause DoS attacks against other containers [78]. Liu et al.

also discovered significant performance variations in container-

based multi-tenant environments for CPU utilization. Our work

further attempts to systematically explore the security problems

related to container resource control.

Security Testing of System Software. Typical system software

are highly complicated software with millions of lines of

code, complex program structures, deep call hierarchies, and

also stateful execution models. To date, fuzz testing has been

commonly used to pinpoint vulnerabilities residing within the

system software [74] due to its automated nature. In recent

years, there has been growing research interest on fuzzing in

both industry and academia [2], [6], [69]. Particularly, Grey-
Box fuzzers [19], [22], [58] use lightweight instrumentation

to track program coverage for each input without requiring

extensive knowledge of the target application. Kernel fuzzing

[23], [35], [41], [47], [60] has been an important topic as

vulnerabilities in kernel code cause serious security breaches,

from information leakage to privilege escalation. One key

strategy in kernel fuzzing is to utilize types and dependencies

of system calls (syscalls). Google has developed SYZKALLER

[32] as an unsupervised coverage-guided kernel fuzzer specified

for fuzzing operating system kernels through the system call

interface. Recent research works [35], [56], [68] perform

advanced analysis (e.g., reinforcement learning) to synthesize

system call traces of high coverage. In addition, recent research

works also conduct security fuzz testing of OS drivers and

file systems [43], [61], [74]. Under most circumstances, the

majority of the work surrounding fuzzing is related to isolating

crashes. This perspective, however, fails to take into account

the wide range of behaviors that do not result in errors or

crashes exhibited by a program, which also motivates our work.

TORPEDO instead focuses on finding out-of-band vulnerabilities

in containers, and takes resource utilization as fuzzing feedback

for the first time.

Cloud Security and Side/Covert Channel Attacks. Resource

sharing facilitates cloud platforms by improving hardware

utilization and reduce cost. Nevertheless, various real-world

attacks have been launched to abuse the shared computing

resource and affect the performance of cloud service users

co-located with a malicious user [21], [36]. In typical clouds,

attackers can place malicious VMs co-resident with targets

on the same server [59] and then launch various attacks

(e.g., side-channel [26], [44], [51], [79] and covert-channel

attacks [25], [63]). Zhang et al. demonstrated that it is feasible

to launch real side-channel attacks on the cloud [73], [84],

[85]. Methods like last level cache [75], memory bus [70],

memory deduplication [71], core temperature [17], [53] are

effective for covert-channel construction. While multiple de-

fense mechanisms have also been proposed [20], [72], [81],

[83], [86], [87], it is still possible to achieve co-residence in

existing mainstream cloud services [67], [76]. With the shared

underlying computing resources, DoS attacks are thus possible

in clouds, including resource-freeing attacks [66], memory DoS

attacks [82], I/O exhausting attacks [37]. Moreover, multiple

attacks [31], [38]–[40], [49], [77] attempt to exhaust the shared

infrastructures (e.g., power facility) to launch DoS attacks. As

the insufficiencies in cgroups could also be exploited to launch

multiple attacks (e.g., covert channel / DoS) [29], our work

can help mitigate potential threats in clouds.

IX. CONCLUSION

We have presented TORPEDO, a fuzz testing framework

that aims to detect out-of-band workloads in containerization

platforms that can abuse the system resource allocation and gain

extra unfair advantages. TORPEDO leverages resource-guided

heuristics to find system call inputs that maximize the unfairness

in system resource consumption across container instances. Our

evaluation confirms vulnerabilities in popular containerization

platforms which were found with manual efforts. We also

identify several vulnerabilities that are unknown to the public.
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