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Abstract—When attackers compromise a computer system and
obtain root control over the victim system, retaining that control
and avoiding detection become their top priority. To achieve this
goal, various rootkits have been developed. However, existing
rootkits are still easy to detect as long as defenders can gain
control at a lower level, such as the operating system level,
the hypervisor level, or the hardware level. In this paper, we
present a new type of rootkit called CloudSkulk, which is a nested
virtual machine (VM) based rootkit. While nested virtualization
has attracted sufficient attention from the security and cloud
community, to the best of our knowledge, we are the first
to reveal and demonstrate how nested virtualization can be
used by attackers to develop rootkits. We then, from defenders’
perspective, present a novel approach to detecting CloudSkulk
rootkits at the host level. Our experimental results show that the
proposed approach is effective in detecting CloudSkulk rootkits.

Index Terms—Virtualization, Hypervisor, Rootkit, Linux
KVM, Virtual Machine Migration.

I. INTRODUCTION

Security vulnerabilities could exist in every layer of a
computer system. After attackers find a way to exploit vulner-
abilities and compromise a computer system, they will attempt
to hide their malicious activities so as to retain their control
and avoid detection for as long as possible. To achieve this
goal, various rootkits have been developed. However, existing
rootkits have an inherent weakness: they can be detected
once defenders deploy a detection system at a lower layer.
The lower layers of a computer system can easily control
the upper layers is due to the fact that the lower layers
implement the abstractions on which the upper layers rely.
Thus, it is commonly believed that the battle between attackers
and defenders is determined by which side can gain control
at the lower layer of a system [1]. Because of this perception,
kernel level defenses are presented to defend against user
level malware, hypervisor level defenses are implemented
to detect kernel level rootkits [2]–[7], and hardware level
defenses are proposed to protect hypervisors and kernels [8]–
[11]. Typically, if defenders like system administrators have
sufficient control and access to the physical machines, they
should have privileges to determine where to deploy their
defense. Therefore, it is not easy for attackers to truly hide
their activities.

Nevertheless, attackers relentlessly continue to find new
ways to retain the control of a compromised computer system
while hiding their malicious activities. In this paper, we

first assume an attacker’s role and explore the possibility of
building a new type of rootkit, which is not visible to defensive
tools running at a lower layer. In particular, we propose
CloudSkulk, a nested Virtual Machine (VM) based rootkit that
targets a virtualized system, especially in cloud environments.
The key feature of CloudSkulk is that the rootkit is inserted
in between the guest operating system (OS) and the original
hypervisor. Utilizing the nested virtualization technique, the
inserted Rootkit in the Middle (RITM) is able to not only
impersonate the original hypervisor to communicate with the
original guest OS, but also impersonate the original guest OS
to communicate with the original hypervisor. Therefore, in
comparison to most existing rootkits, CloudSkulk is stealthier
and harder to detect.

To address this new security challenge, we then assume the
defender’s role and propose an effective detection approach.
In particular, we present a memory-deduplication-based host
level detection approach. We design, implement, and evaluate
our rootkit in a Linux Qemu/KVM based virtualization envi-
ronment, and this same environment is also used to evaluate
the proposed defense.

The major contributions of our work are summarized as
follows:

• From the attackers’ perspective, we present the design
and implementation of a new type of rootkit: the nested
virtualization based rootkit. To the best of our knowledge,
we are the first to demonstrate how nested virtualization
can be used by attackers for developing rootkits. To
evaluate how stealthy the proposed rootkit is, we perform
a variety of experiments and characterize the level at
which the rootkit can remain unnoticed, as introducing
one more layer of virtualization inevitably incurs extra
overhead.

• From the defenders’ perspective, we present and imple-
ment a memory-deduplication-based host level detection
approach. Our experimental results demonstrate that the
proposed method can effectively detect nested VM based
rootkits.

The rest of this paper is structured as follows. We describe
the necessary background information and our threat model
in Section II. We detail our design and implementation of the
CloudSkulk rootkit in Sections III and IV, respectively. We
present our evaluation results in Section V. We then present



our detection approach in Section VI. We survey related
work in Section VII, and finally we conclude the work in
Section VIII.

II. BACKGROUND

There are two enabling techniques for our CloudSkulk
rootkit: VM live migration and nested virtualization. In this
section, we first describe these two techniques, and then we
present our threat model.

A. VM Live Migration

In their pioneering work, Clark et al. [12] proposed
and implemented VM live migration. They defined VM live
migration as a procedure of migrating an entire OS and all of
its applications as one unit from one host machine to another
host machine. The benefits of VM live migration mainly
lie in two aspects: (1) allowing a clean separation between
hardware and software and (2) facilitating fault tolerance,
workload balance, and low-level system maintenance. They
implemented a pre-copy live migration solution in a Xen based
virtualization environment. Since then, VM live migration has
attracted considerable interests from the virtualization and
cloud computing communities, and has become a critical fea-
ture in mainstream hypervisors, including Xen, QEMU/KVM,
VMware, and Hyper-V. Normally, migration happens between
two physical machines, but in this work, including our design,
implementation, and evaluation, we only need one physical
machine to launch a nested VM-based rootkit. In other words,
two physical machines are not required in the development of
CloudSkulk.

In addition, today’s mainstream hypervisors support two
types of live migration, pre-copy based and post-copy based.
In this paper we use the pre-copy based approach, but cloud
vendors could use either pre-copy or post-copy. The rootkit
technique we present in this paper applies to both migration
approaches.

B. Nested Virtualization

Virtualization is the foundation of cloud computing. Virtu-
alization refers to the creation of a virtual version of some
physical resources, such as an operating system, a server, or
a device. A new type of virtualization called nested virtual-
ization has gained its popularity since 2010, when researchers
from IBM for the first time implemented nested virtualization
on x86 architectures in their Turtles project [13]. They imple-
mented nested virtualization in the Linux KVM hypervisor.
Later on, nested virtualization has also been implemented in
Xen (starting from Xen 4.4). The idea of nested virtualiza-
tion is running a hypervisor inside a VM. Compared with
traditional virtualization, where multiple operating systems are
running on top of the same hypervisor simultaneously, nested
virtualization allows multiple hypervisors run on top of the
same hypervisor simultaneously. In the Turtles project [13],
they introduced the concept of Level0 (L0), Level1 (L1), and
Level2 (L2), where Level0 represents the hypervisor that runs
on top of the real hardware, Level1 represents the hypervisor

that runs on top of Level0, as a guest, and Level2 represents
the guest that runs on top of the Level1 hypervisor. In this
paper, we will follow this L0, L1, L2 notation rule.

C. Threat Model

The major function of rootkits is to retain the control of a
compromised victim system without being detected. Typically,
once attackers take the control of a computer system, they
will attempt to retain that control for as long as possible.
We would like to emphasize that taking control and retaining
that control are two separate tasks to attackers, and both of
them are equally critical to attackers. For any rootkits related
research, it is common to assume that the task of taking control
has already been done, in other words, attackers have already
compromised a victim system.

For example, SubVirt [1] assumes attackers have already
gained access to the system with sufficient privileges so that
they can modify the system boot sequence or run arbitrary
code on the target system with root privileges and install
rootkits if needed. Hund et al. [14] also assumed that a victim
system has remote or local vulnerabilities, allowing attackers
to have full access to the victim’s address space and run
arbitrary instructions. In addition, the same assumption is
shared in [15]–[18]. These previous works have also briefly
enumerated various approaches that attackers can utilize to
attain this privilege level, and most of these approaches can
also apply to machines in a cloud environment. Actually,
cloud environments also offer one more attack vector to
exploit, which is the interface between the guest OS and
its hypervisor. A vulnerability in this interface could allow
attackers to break out of a VM, and such vulnerability is called
VM escape vulnerability [19]–[21]. VM escape vulnerabilities
were originally exploited and demonstrated in [22], [23], and
they have gained considerable popularity in the past decade:
more than 100 such vulnerabilities have been discovered and
reported in the CVE database since 2012, and the majority
of them were reported between 2015 and 2020, as shown
in Table I. Practical exploitation against these vulnerabilities
has also been disclosed regularly. For example, in 2019, the
first virtual machine escape exploit against VMware ESXi
was demonstrated in [24]. The authors of that paper chained
multiple vulnerabilities together for exploitation and once
again demonstrated that such an attack is realistic. In addition,
a QEMU VM escape exploit program [25] and a VirtualBox
VM escape exploit program [26] were recently made available
to the public on github.

As the focus of this work is also on rootkits, our threat
model is the same as that used in previous rootkit research.
In general, by exploiting local vulnerabilities, remote vulner-
abilities, or vulnerabilities in a virtualization interface, we
assume that attackers in clouds can gain a root privilege.
Under such an assumption, attackers then can create their
own VMs and initiate VM live migration, and thereafter they
can run nested VMs inside their VM. In other words, they
make L1 as the malicious guest hypervisor, and the victim
VM as L2. In addition, to evade detection, attackers would



VMware VirtualBox Xen Hyper-V KVM/QEMU

2015
CVE-2015-2336
CVE-2015-2337
CVE-2015-2338
CVE-2015-2339
CVE-2015-2340

CVE-2015-7835
CVE-2015-2361
CVE-2015-2362

CVE-2015-3209
CVE-2015-3456
CVE-2015-5165
CVE-2015-7504
CVE-2015-5154

2016
CVE-2016-7082
CVE-2016-7083
CVE-2016-7084
CVE-2016-7461

CVE-2016-6258
CVE-2016-7092 CVE-2016-0088

CVE-2016-3710
CVE-2016-4440
CVE-2016-9603

2017
CVE-2017-4903
CVE-2017-4934
CVE-2017-4936

CVE-2017-3538
CVE-2017-8903
CVE-2017-8904
CVE-2017-8905
CVE-2017-10920
CVE-2017-10921
CVE-2017-17566

CVE-2017-0075
CVE-2017-0109
CVE-2017-8664

CVE-2017-2615
CVE-2017-2620
CVE-2017-2630
CVE-2017-5931
CVE-2017-5667
CVE-2017-14167

2018
CVE-2018-6981
CVE-2018-6982

CVE-2018-2676
CVE-2018-2685
CVE-2018-2686
CVE-2018-2687
CVE-2018-2688
CVE-2018-2689
CVE-2018-2690
CVE-2018-2693
CVE-2018-2694
CVE-2018-2698
CVE-2018-2844

CVE-2018-8439
CVE-2018-8489
CVE-2018-8490 CVE-2018-7550

CVE-2018-16847

2019
CVE-2019-0964
CVE-2019-5049
CVE-2019-5124
CVE-2019-5146
CVE-2019-5147

CVE-2019-2723
CVE-2019-3028 CVE-2019-18420

CVE-2019-18421
CVE-2019-18422
CVE-2019-18423
CVE-2019-18424
CVE-2019-18425

CVE-2019-0620
CVE-2019-0709
CVE-2019-0722
CVE-2019-0887

CVE-2019-6778
CVE-2019-7221
CVE-2019-14835
CVE-2019-14378
CVE-2019-18389

2020 CVE-2020-3962
CVE-2020-3963
CVE-2020-3964
CVE-2020-3965
CVE-2020-3966
CVE-2020-3967
CVE-2020-3968
CVE-2020-3969
CVE-2020-3970
CVE-2020-3971

CVE-2020-2929 CVE-2020-0910

CVE-2020-1711
CVE-2020-14364

Total 29 15 15 14 23

TABLE I: VM Escape CVE Vulnerabilities reported in be-
tween 2015 and 2020

avoid make any changes to the kernel level code of the L1
hypervisor. After all, one of the most prominent application
scenarios of virtualization is monitoring and protecting guest
OS kernel code integrity. Based on this threat model, we will
describe how attackers can leverage VM live migration and
nested virtualization to create and install a CloudSkulk rootkit
in Sections III and IV, respectively.

III. DESIGN

The design and implementation of CloudSkulk is based on
the Linux kernel-based virtual machine (KVM) hypervisor.
In a Linux system, the KVM hypervisor is implemented
as two kernel modules: one architecture independent (i.e.,
kvm.ko), and one architecture dependent (i.e., kvm-intel.ko
or kvm-amd.ko). KVM uses hardware-level support found in
modern CPU virtualization extensions, Intel VT and AMD-
v, to virtualize a guest VM architecture. Each VM is then
treated as a normal process, and is scheduled by the default
Linux process scheduler. To create and launch VMs, users
most typically employ a user-level tool called Quick Emulator
(QEMU). QEMU software utilizes KVM’s virtualization fea-

tures to emulate an unmodified guest VM’s OS, as well as its
para- and/or full-virtualized devices.

The rootkit we present was performed on a Linux plat-
form that hosts the QEMU/KVM VM software paradigm.
This decision was made primarily due to the following two
key attributes: (1) QEMU/KVM provides a utility for live
migration and (2) QEMU/KVM enables nested hypervisors.
Conceptually our proposed rootkit can work at other cloud
platforms that provide these same two attributes, but we chose
QEMU/KVM because of its popularity and implementation
flexibility (i.e., open source code).

Typically, there are four steps to install a CloudSkulk
rootkit:

• Step ¶: Typically, an attacker, just like normal cloud
customers, can rent a VM in the cloud environment.
There could be many VMs co-existing on the same host
machine as the attacker’s VM, and one of them, would
be the target for attack. In Figure 1, we consider GuestM
to be the VM owned by the attacker, and Guest0 to be
the target VM. We then assume that by taking advantage
of existing vulnerabilities in the hypervisor, the attacker
is able to break out of its VM and gain privilege control
on the host (which allows the attack to launch a VM
and initiate VM migration). This is feasible in reality as
demonstrated in previous research [22], [23]. Note that
the attacker does not necessarily need to break out of a
VM: if a remote vulnerability existing on the host allows
the attacker to compromise the host system, then breaking
out of a VM is not needed, in this case even renting a
VM is not needed, and the attacker can just skip this step
and start from Step ·. As we have stated in the threat
model, this (attackers having root access to the host) is a
reasonable assumption and such an assumption is shared
among most rootkit related papers - and that is why it is
called “rootkit” - a toolkit that is installed by the root or
anyone who has the root privilege.

• Step ·: Once the attacker has the privilege control on the
host, the attacker can launch a new VM - GuestX. This
VM will functionally represent our RITM.

• Step ¸: Utilizing the nested virtualization technique, the
attacker can then launch a VM inside GuestX.

• Step ¹: Utilizing the virtual machine live migration tech-
nique, the attacker can migrate the target VM (Guest0)
to the nested VM.

After the above four steps, the target VM will be migrated
into the new VM as a nested VM, and Guest0 will be running
inside GuestX. At this moment, the attacker will kill the
original VM (at the source side of the migration).

A. Advantage of CloudSkulk

The major advantage of a CloudSkulk rootkit lies in its
stealthiness. From the VM owner’s perspective, the owner
does not observe any obvious behavior change. There are
two reasons: on the one hand, when launching Guest0 and
GuestX, port forwarding is used by the attacker, so that the
victim will still be able to access its VM using the same
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Fig. 1: Attack Overview

command as before; on the other hand, various techniques
of detecting virtualization can not be applied in this scenario,
as the victim’s machine is supposed to be running in a virtual-
ized environment. However, the VM owner will experience a
performance change due to the addition layer of virtualization.
This performance change will be characterized in Section V.

From the system administrator’s perspective, GuestX will
now be considered as Guest0. The attacker can ensure that
GuestX and Guest0 are using the same virtualized devices, the
same guest OS, and run the same programs; meanwhile, with
the complete control inside GuestX, the attacker has sufficient
power to tamper with various virtual machine introspection
(VMI) techniques [27]–[30]. This has been studied before
[16], [31]–[33]. Basically, VMI tools commonly rely on some
priori knowledge of the target operating system, in particular
kernel level knowledge, but when attackers are in control
of the guest kernel, by manipulating various kernel data
structures, attackers are able to subvert existing VMI tools.
The consequence of subverting VMI tools is, attackers will
be able to hide their activities or any anomaly in the guest
operating system. One last thing is, the PID of GuestX and
Guest0 are different, if the system administrator is monitoring
this PID, then he may notice this change. However, since the
attacker has the privilege on the host, and given the fact that
the PID is just a variable in memory, once Guest0 is killed at
the end of the migration, changing the PID of GuestX to the
original PID used by Guest0 is a trivial task for the attacker.

IV. IMPLEMENTATION

In this section, we will first describe how a CloudSkulk
rootkit is installed in an existing virtualized environment; then
we will explain what malicious services can be run once a
CloudSkulk rootkit is installed.

A. CloudSkulk Installation

Cloud environments are highly dynamic. The characteristics
of a potential VM target may be configured in an assortment
of QEMU image and system emulation features. For a generic
implementation of a CloudSkulk rootkit, an attacker must
leverage some system-level history utilities and VM inspection

tools to expose a targeted VM configurations. Such informa-
tion is needed because live migration requires a destination
VM to first be created with the same configurations as the
source VM.

The most straightforward solution for finding a target VM’s
configurations would be to investigate the command line
history (history), or report running process statuses (ps -ef ) to
determine the original QEMU command used. If for whatever
reason these system-level utilities are not available on the host,
one powerful user-space tool, the QEMU Monitor, can be used.
The QEMU Monitor is implemented alongside the QEMU
source code, therefore it is normally available on any cloud
platforms hosting QEMu/KVM. For instance, an attacker can
issue a QEMU Monitor command on a running target VM to
determine what block devices are emulated by QEMU (info
qtree, info blockstats), or determine the size and state of the
active VM memory (info mtree, info mem), or even determine
the network device type, model, and state from (info network).
QEMU Monitor commands can also be used with other user-
space utilities like qemu-img to determine the disk size of a
running VM. A CloudSkulk implementation then begins by
first selecting a target VM running on the host, and obtaining
its QEMU configuration parameters by using some of the
aforementioned tools.

A rootkit can then be created on the host side. The rootkit is
a QEMU process that matches the target QEMU parameters.
The guest VM environment within the rootkit is provided with
its own hypervisor and the ability to nest VMs/hypervisors.
Therefore, the OS within the rootkit can be modified, if
needed, to enable the QEMU/KVM software infrastructure.
After this modification, the next step in implementing a
CloudSkulk rootkit is the creation of the nested VM. The
nested VM is the live migration destination VM with QEMU
configuration parameters that match the target VM on the host
side. One requirement of live migration is that the destination
VM parameters should be appended such that it is paused in
an incoming state, and hence it will be listening for migration
data via some specified parameter.

Except for a minor clean-up, the final step in implementing
our rootkit is to invoke the live migration utility via the
QEMU Monitor. Depending on how the target VM’s monitor is
emulated on the host side, its QEMU Monitor can be opened in
several ways. For instance, if the target VM’s QEMU monitor
is multiplexed onto another serial port, such as a telnet server
listening on port 5555, then telnet on the host side could be
invoked to open the VM’s QEMU Monitor.

The port numbers we chose in our implementation are
irrelevant. However, the relationship of the port numbers with
respect to the rootkit, the nested VM, and the live migration
command are crucial to our implementation. The target VM
begins the transaction by sending its migration data to HOST
PORT AAAA. The rootkit was created at the host side such that
it continues the transaction by forwarding HOST PORT AAAA
to its internal ROOTKIT PORT BBBB. Finally, the paused
nested VM will conclude the transaction as it will receive the
migration data from ROOTKIT PORT BBBB.



A minor clean-up is required after the live migration has
completed. This can be accomplished by terminating the
Linux process responsible for the post-migrated, paused target
VM on the host side, or simply through a QEMU Monitor
command. (The QEMU Monitor should still open on the post-
migrated VM). This step completes the implementation of a
CloudSkulk rootkit.

B. Services Supported by CloudSkulk

Once a CloudSkulk rootkit is installed, attackers can run
malicious services in the rootkit. We classify malicious ser-
vices into two categories: passive services and active services.

1) Passive Service: A passive service means attackers
mainly monitor the events and activities happened inside a
victim system. Since all the traffic from and to the victim
system needs to go through the rootkit, attackers would be able
to examine and record each packet. Similar to a traditional
kernel rootkit that modifies the system call table in the
kernel to achieve the keystroke logging function, a CloudSkulk
rootkit can achieve the same function by modifying its own
hypervisor, i.e., the L1 hypervisor. In fact, attackers can even
use the VMI technique to serve its malicious purpose. While
VMI has been considered as a defensive technique so far,
attackers who are in control of a hypervisor, can utilize VMI
to monitor the victim system. Current mainstream hypervisors
already offer some basic VMI features. Take KVM/QEMU for
example, in the QEMU Monitor command line, various com-
mands are available to examine the CPU registers, memory
state, and I/O information of each VM instance. Attackers can
achieve further advanced features by modifying the QEMU
console code, and these modifications would not affect the
victim system in any way, but may maximize the attackers’
power. For instance, by trapping the write system calls in the
victim system, attackers would be able to understand encrypted
packets: plaintext data could be recorded before it is encrypted.

Besides observing the victim system, attackers can launch
separate operating systems. Because the rootkit itself is a
hypervisor, attackers can create a separate but malicious OS
and let it run in parallel with the victim OS. Such a malicious
operating system enables attackers to deploy various malicious
services, such as phishing web services, spam replays, and
distributed denial-of-service zombies.

2) Active Service: An active service means attackers inten-
tionally manipulate the packets from and to the victim system.
While passive services mainly cause a confidentiality problem
to the victim, active services could tamper with the victim
system’s integrity. For example, if the victim system is running
an email server, attackers can modify, drop, or even delete
certain email messages. As another example, if the victim
system is running a critical web service (e.g., online banking,
online trading, medical service, and scientific computation),
attackers can easily drop certain web requests, or modify
certain web responses served to its web clients, and such a
manipulation could cause devastating consequences to the web
server owners and their customers.

V. EVALUATION

Our evaluation of a CloudSkulk rootkit includes two parts:
(1) demonstrate a successful implementation on a platform
that resembles our targeted cloud environment, and (2) quan-
titatively show our rootkit’s ability to remain unnoticed by a
target guest user under the host cloud platform.

All the experiments are performed on a testbed running
Fedora 22 operating system with Linux kernel 4.4.14 (-
200.fc22.x86 64) containing KVM. The guest L1 and L2 are
also running the Fedora 22 workstation version, with Linux
kernel 4.4.14. All execution environments: L0, L1, and L2
are running the latest stable version of QEMU 2.9.50 (v2.9.0-
989-g43771d5) with the following install config options: –
enable-kvm, –enable-curses. Our testbed platform uses Dell
Precision T1700 with Intel(R) Core(TM) i7-4790 CPU @
3.60GHz processors. The Host has 16GB memory, and we
assign each VM 1GB memory. Note that QEMU offers plenty
of parameters for its VMs, setting different values to these
parameters might affect workload performance in the VM
considerably. In our experiments, we basically follow the
QEMU/KVM best practices described by [34].

A. Evaluation Results (Part I)

To demonstrate a successful installation of CloudSkulk, we
have taken a video and publicly made it available via youtube:
https://youtu.be/z082Nj3AW0c. In the video, we assume that
the attacker has already gained superuser control on the host
system. The major purpose of this video is to demonstrate the
feasibility of the attack and how fast it is to install the rootkit.
It can be seen from the video that the time cost of rootkit
installation (dominated by the time cost of the live migration)
is less than 1 minute. The major reason that the migration
being so fast is because the attack involves only one physical
machine, while in a typical VM live migration scenario, there
are two physical machines involved, thus it incurs a lot of
network traffic, which is not existing in the presented attack.

B. Evaluation Results (Part II)

1) Macro Benchmarks: There is no fixed threshold that de-
fines the levels of remaining unnoticed, nor is there a threshold
that defines a maximum duration of installation time required
to remain unnoticed. Instead, we focus on characterizing both
the performance degradation caused by our unique type of
RITM and its installation time cost. Our objective lies in that
the results can then be applied on a case-by-case basis for
specific virtualized environments to validate the efficacy of
our CloudSkulk.

The performance and live migration timing of a VM running
in the cloud is affected by a diverse set of variables, some of
which are interdependent. It is then out of the scope of this
paper to exhaustively characterize these variables, so instead
we follow the “best effort practice” ideology of testing and
choose to assume a common cloud guest user, with only
a single set of QEMU configuration parameters. However,
we know that a guest user’s workload within the running
environment is the variable that will play a significant role



Fig. 2: Linux Kernel Compile Timing (y scale is logarithmic) Fig. 3: Netperf - Network Throughput (y scale is logarithmic)

in performance and migration timing. Therefore, using an
assumed cloud guest user with static configuration parameters,
we can characterize both the performance degradation and
live migration timing affected by two types of generalized
activity the user could be performing: CPU/Memory intensive
workloads and network intensive workloads.

To evaluate our first focus on CPU/Memory intensive work-
loads, we chose to collect Linux Kernel compile times for the
same 3 execution environments: L0, L1, and L2. By nature,
the kernel compile process is CPU intensive and Memory
intensive. We wrote a bash shell script, sharing the exact same
.config file created on L0 for all tests, and decompressed, then
compiled the Linux Kernel version 4.0 5 consecutive times and
averaged the results. This characterization data can be seen in
Figure 2. The labels in Figure 2 show the percentage increase
in timing with respect to the layer below it. Each data point
displays its relative standard deviation in a bar centered on the
top of each column.

We can quantitatively show performance degradation per-
ceived by a guest user for CPU/Memory intensive workloads
before and after the installation of a CloudSkulk rootkit by
evaluating the percentage difference of Kernel compile time
between L1 and L2 in Figures 2. After our rootkit is installed,
a targeted guest user will experience a 25.7% decrease in speed
associated with the Kernel-compile type of CPU/Memory
workloads. 1

For our second performance focus, we chose to use an-
other well-known, widely used open source benchmark, Net-
perf [35]. Netperf is a network performance benchmark, writ-
ten in C, which is used to measure networking performance
based on bulk data transfer and request/response performance
using the TCP/UDP network protocols. For our testing, we
chose to measure the bulk data transfer performance, or
unidirectional stream performance of TCP. We wrote a bash
shell script that executed the Netperf application 5 consecutive

1The significant gap (280%) between the kernel compilation time on L0
and L1 was caused by the compiler cache named ccache. It was enabled on
L0 but somehow we were not able to enable it on L1 and L2.

times and averaged the results for the same L0:L2 execution
environments. This Netperf benchmark data can be seen in
Figure 3. The data labels in Figure 3 show the percentage
decrease in latency with respect to the layer below it. Each data
point displays its relative standard deviation in a bar centered
on the top of each column.

Again, the percentage difference of the throughput between
L1 and L2 in Figure 3 quantitatively show the performance
degradation perceived by a guest user for network intensive
workloads before and after the installation of a CloudSkulk
rootkit. As visually elucidated by the relative standard devia-
tion bars, all three levels of the execution environment perform
nearly the same with the overlapping data sets. The averages
show a 8.95% increase in throughput for the TCP bulk data
transfer type of network workloads after our rootkit installa-
tion, with the standard deviations (explicit values not shown
in Figure 3) for L0, L1, and L2 being 1.11%, 10.32%, and
3.96%, respectively. With the standard deviations higher than
the percentage differences in throughput, we conclude that
this performance is nearly the same across all the execution
environments. These results demonstrate that our proposed
CloudSkulk rootkit can effectively remain undetected from a
target user in a cloud environment in which similar network
workloads are running.

For our last evaluation, we chose to characterize the live
migration timing of a guest user performing various types of
workloads: idle, Linux kernel compile, and Filebench [36].
An idle workload is represented by a guest user that is
not executing any workload - this can be thought of a
user connected to the cloud, but away from their device
or inactive. We use the Linux kernel compile workload to
represent CPU/memory intensive workloads. We use Filebench
to represent IO intensive workloads.

For this testing, we chose two levels of live migrations to
characterize: L0-L0, and L0-L1. This live migration charac-
terization data can be seen in Figure 4. The L0-L0 data series
in Figure 4 depict a typical invocation of live migration in
the cloud, except that there is no network traffic generated



Config integer
bit

integer
add

integer
div

integer
mod float add float mul float div double add double mul double div

L0 0.26 0.13 5.94 6.37 0.75 1.25 3.31 0.75 1.25 5.06
L1 0.25 0.13 5.96 6.39 0.75 1.26 3.32 0.75 1.26 5.07
L2 0.26 0.13 6.14 6.59 0.78 1.30 3.43 0.78 1.30 5.23

TABLE II: lmbench: Arithmetic operations - times in nanoseconds

Config signal handler
installation

signal handler
overhead

protection
fault

pipe
latency

AF UNIX
sock stream latency

fork+
exit

fork+
execve

fork+
/bin/sh -c

L0 0.075 0.50 0.27 3.49 3.58 74.6 245.8 918.7
L1 0.096 0.58 0.29 6.75 5.37 73.65 275.05 966.67
L2 0.10 0.60 0.32 65.49 43.98 242.19 588.50 1826.00

TABLE III: lmbench: Processes - times in microseconds

aaaaaaa
Level

File Size
File Size 0K File Size 1K File Size 4K File Size 10K

File
Creation

File
Deletion

File
Creation

File
Deletion

File
Creation

File
Deletion

File
Creation

File
Deletion

L0 126,418 379,158 99,112 280,884 99,627 279,893 79,869 214,767
L1 121,718 361,860 97,073 268,977 95,821 273,863 77,118 204,260
L2 2,430 320,349 62,933 262,478 96,588 251,766 70,098 196,449

TABLE IV: lmbench: File system latency - files creations/deletions per second - times in microseconds

Fig. 4: Live Migration - End-to-end Timing Analysis against
Varied Workloads.

during the migration,because both the source and destination
VMs coexist on a single, commonly shared environment. The
L0-L1 data series in Figure 4 depict our unique nested VM-
based technique used to implement CloudSkulk. This type of
migration involves an L1 VM running on the host side to be
live migrated into an L2 nested VM that is encapsulated within
our L1 rootkit VM (VM-based RITM). The common metric
for live migration is the total migration time (end-to-end time).
Each data point in Figure 4 is the average end-to-end time for
5 consecutive runs with their corresponding relative standard
deviation displayed in bars centered above each column. There

are two sets of data labels in Figure 4. The bottom-most set
of data labels show the numerical values associated with each
end-to-end time, and the top-most set shows the percentage
increase in end-to-end time from L0-L0 to L0-L1. The bottom-
most set of data labels are important and more directly relevant
to our evaluation process. These values allow us to determine
our CloudSkulk installation time based on what workload
activities the user could be performing. Since a CloudSkulk
installation time is dominated almost entirely by the time based
on the nested live migration step, we will approximate the
total installation time below by referring to it as the integer
ceiling of its nested live migration end-to-end time. Therefore,
the best case installation time of a CloudSkulk rootkit is v26
seconds. This occurs when the target guest workload is idle.
The installation time of CloudSkulk when a target guest user
is performing I/O intensive workloads is v29 seconds; for
CPU/Memory intensive workloads, the time is v820 seconds.
The top-most set of data in Figure 4 is less relevant, but still
important to note. This data labels show us how much extra
time will be added to our live migration end-to-end time with
respect to the nominal L0-L0 type migrations.

2) Micro Benchmarks: To more precisely measure the
overheads, we performed a number of microbenchmark tests.
We chose lmbench 3.0-a9 [37] as our microbenchmark. Our
experimental results are presented in Tables II, III, IV.

As shown in these tables, virtualization (including nested
virtualization) has negligible effect on all arithmetic oper-
ations. Also, for file creation and deletion operations, both
L2 performance and L1 performance match the baseline, i.e.,
the L0 performance. For process operations, process fork



generates big performance overhead in L2, likely because of
the extra traps into the L0 hypervisor [38].

VI. DETECTION

A. Detection from L2

The key to detecting a CloudSkulk rootkit is to detect the
nested virtualization environment. More specifically, we need
to detect the existence of the L1 hypervisor. In theory, the
detection can be conducted from either within L2 or within
L0. In fact, a detection approach deployed in L2 is more
preferable by a VM user, because in that scenario the detection
is launched and controlled by the user itself. By contrast,
a detection launched by a system administrator, may raise
privacy concern of VM users, e.g., cloud customers. However,
because L2 is under the control of L1, events and timing
measurements in L2 can be monitored and manipulated by
attackers from L1. Thus, instead of running a detection module
at L2, we propose to deploy the detection mechanism at L0.

B. Our Approach: Detection from L0

Detecting a CloudSkulk rootkit in L0 is less straightforward
since attackers in control of L1 might impersonate the victim’s
virtual machine, such as running the same OS and applications
as the victim’s virtual machine runs. In other words, existing
virtual machine introspection (VMI) techniques that simply
scan the memory of the virtual machine are not sufficient.
Therefore, we build our detection based on a memory sav-
ing mechanism called memory deduplication, which reduces
memory overhead in virtualized environments, and thus has
been widely adopted [39], [40] by mainstream hypervisors
such as Linux Qemu/KVM, Xen, VMware, and Microsoft
Hyper-V. In Linux, this mechanism is called kernel samepage
merging (KSM) [40], and is implemented with a kernel thread
called ksmd. The basic idea is that ksmd will periodically
scan memory pages in the system. If two memory pages are
identical, ksmd will merge these two pages, and only one copy
will remain in the memory. Later on, if a write access is
needed, a copy-on-write technique is used to copy the merged
page. Because of this copy-on-write technique, a write access
to a merged page incurs more time than a write access to a
regular memory page. Particularly, previous studies [41], [42]
have shown that the time difference could be significant.

To utilize memory deduplication for detecting nested virtu-
alization, we first choose some unique memory pages in L2,
for example, a unique file loaded in L2’s memory. Note that
the term unique means for each page of this file, there is only
one copy of the page existing in the memory. In other words,
the page is unique enough so that no identical pages also exist
in the memory. We assume such a file (called File-A) exists
in L2’s memory. The size of File-A can be just as large as
100 pages, e.g., 400KB (assuming 4KB per page). Because
the attacker in control of L1 wants to impersonate L2, we
therefore assume File-A also exists in L1’s memory; otherwise,
we would already know the difference between L1 and L2,
and therefore the impersonation would be easily detectable -

observing such a difference is already sufficient to determine
the existence of L1.

The following steps describe our detection approach:
• Step 1. We load File-A into L0’s memory. We wait for

a while - until the File-A is merged with the File-A in
L2/L1. We then test and record the write access time
(represented as t1) to each page of File-A.

• Step 2. We slightly change each page of File-A in L2, and
we call this changed version File-A-v2. We load File-A
into L0’s memory again. We wait for a while, then test
and record the write access time to each page of File-A.
We use t2 to represent the write access time.

If L1 does not exist, then t1 should be significantly larger
than t2. The reason is that, in step 1, there are two copies of
File-A: one in L2 and one in L0. Therefore, t1 represents the
write access time to merged pages. However in step 2, because
the pages of File-A in L0 are not identical to the pages of File-
A-v2 in L2, they would not be merged. Thus, t2 represents the
write access time to regular pages.

However, if L1 does exist, then t1 should not be significantly
different from t2. This is because in step 2, File-A in L0 should
still be merged with File-A in L1. Thus, t2 represents the write
access time to merged pages.

C. Implementation and Evaluation

We have implemented the detection module in C program-
ming language. The main job of the detection module is to
load a specified file into its memory, wait for a given amount
of time, and test and record the write access time to each
page of the file. This module runs in L0 and collects all the
necessary data. We have also written a program running in L2
to load a file in memory, and when needed, make changes to
each page of that file. The two programs consist of 300 lines
of C code.

Our evaluation follows the aforementioned two steps. We
perform the evaluation in two scenarios: (1) scenario 1 where
L1 does not exist; and (2) scenario 2 where L1 does exist.
For both scenarios, we measure t1 and t2, and use a randomly
chosen mp3 music file as File-A. For demonstration purpose,
we also collect t0, which simply represents the time for loading
File-A in L0’s memory but not in any virtual machine’s
memory. We test and record the write access time to each page
of File-A. We consider this (t0) as the baseline case. All the
collected data are displayed in Figures 5 and 6. In Figure 5 that
shows the result without a nested virtual machine, as expected,
t1 is significantly larger than t2 (which is also similar to t0).
The result of scenario 2 with a nested virtual machine is shown
in Figure 6. As expected, there is no significant difference
between t1 and t2. However, both are significantly larger than
t0. The results demonstrate that our detection approach via
memory deduplication can effectively detect a CloudSkulk
rootkit.

D. Discussion

When File-A is changed to File-A-v2 in L2, in theory,
attackers in L1 can do the same change in L1. However, in



Fig. 5: t0, t1, t2, when there is no nested virtual machine Fig. 6: t0, t1, t2, when there is a nested virtual machine

reality, this would not really help attackers evade detection. In
our experiment, for the purpose of demonstration, we used 100
pages and all the 100 pages belong to one single file. However,
in practice, defenders can just use one or few pages to detect
the existence of a CloudSkulk rootkit. Thus, if L1 keeps track
of changes of millions or even billions of L2 pages, in order
to synchronize any change within one single page, the induced
cost will be unrealistically expensive. Plus, synchronizing the
changes requires modifications in the L1 hypervisor/OS code,
which could be easily detected.

1) Synchronization between L0 and L2: One major require-
ment of the presented detection approach is that File-A should
initially appear in both L2 and L0. This can easily be achieved
by a web interface. Typically in a cloud environment, cloud
service vendors (such as Google and Amazon) provide users
with a web interface, which allows users to control their virtual
machines. The vendor can include a random file (like File-A)
in the virtual machine image at the virtual machine setup stage,
or cloud customers can request such a file at any time via the
web interface. Upon a request, cloud vendors generate such a
file and send it to both L0 and L2. In this way, File-A will
appear in both L0 and L2.

Note that using such a web interface does not open any
new attacking surface, because this is how exactly today’s
cloud vendors allow customers to control their VMs. Google,
Amazon, and several other major cloud services that we have
used all provide such an interface, and thus the proposed
defense does not introduce any new attacking surface, instead,
it is just leveraging an existing interface.

2) Assumption about L1: Earlier on we made an assump-
tion that L1 should contain the same file in its memory as
L2 does. This assumption seems counter-intuitive: As we
knew, GuestX already contains memory pages from Guest0.
However, GuestX should still run the same OS or same
programs as Guest0, and try to include the same file as L2
does. This is related to how Virtual Machine Introspection
(VMI) tools work. VMI tools usually are built with priori
knowledge about the guest OS data structures, allowing them
to interpret the hardware-level view in OS-level semantics.
Therefore, VMI tools typically scan some specific memory
locations only, assuming that the key data structures are stored

in these memory locations. Actually, scanning all memory
pages of a 64-bit virtual machine is just not feasible: a 64-bit
OS usually has 264 addresses and a typical page size is 4KB
(212), and thus there are 252 pages for each process. Because
of this, GuestX containing memory pages from Guest0 cannot
guarantee that these pages will ever be scanned. This is also
the reason that today’s VMI tools cannot introspect nested
VMs effectively. Due to the two layers of semantic gap, VMI
tools simply have no idea where to identify key data structures
of nested VMs. In other words, VMI tools can reconstruct the
key data structures of GuestX, because they know where these
data structures are located in the memory; but they cannot
reconstruct the key data structures of Guest0 (i.e., nested VM).

E. Alternative Approaches

Other detection heuristics such as VMI based fingerprint
could also be used by cloud system administrators. However,
attackers might evade VMI based fingerprint detection by
ensuring that the L1 hypervisor is using the same operating
system as the victim’s operating system, and thus they could
have the same “fingerprint” and may not be discernible to
detection tools.

In addition, Graziano et al. [43] implemented an extension
to the volatility framework, and made it capable of detecting
the existence of hypervisors from the outside of a virtual
machine. This implies that a system administrator on L0 might
be able to identify an L1 hypervisor. Their approach mainly
works by scanning the memory to identify one specific data
structure, Virtual Machine Control Structure (VMCS) that
belongs to the Intel VT-x technology. In machines where the
Intel VT-x is not used, thes extension will fail. Our proposed
approach, does not rely on such a hard-coded signature, instead
it is a software based approach.

VII. RELATED WORK

The related work of CloudSkulk can be categorized into
three groups: kernel rootkits, security issues in clouds, and
nested virtualization.

A. Kernel Rootkits

Over the years, kernel level rootkits have been developed
and widely used by attackers. To name a few, adore-ng [44],



Sebek [45], KBeast [46], and override [47] are all well-
known kernel rootkits. One common feature of these kernel-
level rootkits is that they all change some code in the kernel
space, typically in the form of a loadable kernel module
(LKM). Detecting kernel rootkits is relatively harder than
detecting user-level rootkits, unless defenders can insert code
underneath the operating system - like in the hypervisor, or
in the hardware layer. Because of this, a body of hypervisor
based rootkit detection approaches have been proposed [2],
[3], [7], [48]–[50]. In the meanwhile, researchers found that
hypervisor could also be used for implementing rootkits. Two
representative projects are the Subvirt [1] and BluePill [51].
The key idea of these two projects are similar: by inserting
a thin hypervisor underneath a target operating system, the
attacker can convert the target operating system into a guest
operating system. Then, the attacker can monitor the guest
operating system from the inserted hypervisor.

CloudSkulk differs from Subvirt or BluePill in several
aspects. (1) Many virtualization detection approaches have
been proposed over the last decade [52]–[54]. Most of these
proposed virtualization detection approaches can be used to
detect Subvirt and BluePill, as programs exhibit different
behaviors in a virtualized environment from those in a non-
virtualized environment. However, such an approach does not
apply to CloudSkulk. This is because in our threat model,
the target operating system is supposed to be running in a
virtualized environment, and therefore, detecting virtualization
is not sufficient to prove the existence of any anomaly. (2) Af-
ter the rootkit installation, Subvirt requires a rebooting of the
target operating system, while BluePill on the other hand, does
not even survive upon rebooting. In CloudSkulk, we address
the rebooting problem by leveraging the VM live migration
technique. It means that the attack is performed on the fly and
can take effect right away without rebooting, and even if in
the future system administrators decide to reboot, CloudSkulk
will still survive. (3) Besides that, SubVirt/BluePill requires
attackers to install a bootloader on the victim’s machine,
which typically requires attackers to have physical access to
the victim’s machine, or interact with the victim using social
engineering skills. For example, the SubVirt work mentions
one possible scenario, where attackers can “bribe an OEM
or vendor or corrupt a bootable CD ROM/DVD image”. In
CloudSkulk, the bar is much lower, and there is no need to
interact with the victim or have physical access to the victim’s
machine.

B. Security Issues in Clouds

As cloud computing has become prevalent, various security
issues in clouds have drawn plenty of attention from academia
and industry. Most of these issues are stem from the co-
residence problem, a problem that was first revealed in [55].
The paper proves that in the Amazon EC2 cloud, attackers
can identify where a target VM is located, and therefore
they can initiate a malicious VM to be placed co-resident
with the target VM. Once attackers are able to place their
VMs co-resident with the target VM, there are many types of

attacks they can perform: building a side channel to extract
private keys [56], or constructing a covert channel to transfer
secret/sensitive information [41], [57], [58], or intentionally
cause performance drop in the target VM by injecting various
interferences [59]. The presented attack in this paper shows
that there is one more attack vector that attackers can exploit,
and attention needs to be paid from the security community
and cloud system administrators.

On the defense side, research efforts have mainly been paid
in two aspects: (1) monitoring or protecting VMs from the
hypervisor, and (2) reducing attack surface introduced by the
hypervisor. The former is famously known as virtual machine
introspection, a concept proposed by Garfinkel et al. [27] in
2003 and has since then been extensively studied, including
the development of various VMI tools [9], [60]–[62]. A more
comprehensive descriptions of VMI related work are given
in [32]. The latter includes: the NoHype project [63], which
reduces the attack surface by letting the VM run natively
on the underlying hardware whenever possible; the SecVisor
project [4], in which only some basic functions of a typical
hypervisor are implemented; the Xoar project [64], which
splits the control VM of Xen hypervisor into several smaller
components; the DeHype project [65], which de-privilegesa
hypervisor’s execution to the user mode; and several other
projects [66]–[69].

C. Nested Virtualization

Researchers from IBM presented the Turtles project in
2010 [13], which describes the design and implementation of a
nested virtualization system on x86 architectures. The Turtles
project is part of the Linux/KVM hypervisor; therefore since
then, KVM has included the support for nested virtualization.
Xen, another popular hypervisor, has also included the sup-
port for nested virtualization since Xen 4.4. In comparison
to traditional virtualization, nested virtualization introduces
higher complexity and incurs extra overhead. Several research
projects have focused on improving the performance of nested
virtualization [70]–[72]. However, on the positive side, the
major benefit of nested virtualization for cloud providers lies
in that it allows users to run their own hypervisors. Additional
benefits of nested virtualization could be facilitating develop-
ers to debug hypervisors.

From security perspective, Zhang et al. presented the Cloud-
Visor project [73], which for the first time leverages nested
virtualization for defense purposes. The key idea of CloudVi-
sor is to introduce a thin hypervisor underneath a traditional
hypervisor, so as to protect the VMs running on top of that
traditional hypervisor, given that traditional hypervisor could
be malicious or compromised. Beham et al. [74] applied
nested virtualization in the domain of intrusion detection and
honeypot deployment. In their experiments, they observed
significant performance overhead for I/O intensive workload
in the nested virtualization environment: as much as 50%
drop, compared to the single level virtualization. Morabito
et al. [75] proposed to utilize nested virtualization to detect
hypervisor based rootkits. Cheng et al. [76] presented the



TinyChecker project, which employs nested virtualization to
protect VMs against hypervisor failures. Suzaki et al. [77]
proposed to use nested virtualization for secure protocol fuzz
testing. Compared to all these previous works, we are the first
to demonstrate that nested virtualization can also be leveraged
by attackers to develop rootkits. Meanwhile, we also propose
an effective detection approach to capturing such nested VM
based rootkits.

VIII. CONCLUSION

In this paper, we first proposed a new type of rootkit
called CloudSkulk, which is nested-VM-based and targets
a cloud environment, from the perspective of an attacker.
The key feature of CloudSkulk is that the rootkit is inserted
in between the original hypervisor and a guest operating
system (OS). Utilizing the nested virtualization technique, the
inserted Rootkit In The Middle (RITM) is able to not only
impersonate the original hypervisor to communicate with the
original guest OS, but also impersonate the original guest OS
to communicate with the original hypervisor. We implemented
a CloudSkulk rootkit in a Linux KVM nested virtualization
environment, and we performed a variety of experiments to
measure the performance overhead of CloudSkulk and char-
acterized the level at which the rootkit can remain unnoticed.
We then from defenders’ perspective, presented the design and
implementation of a memory-deduplication-based mechanism
to detect a CloudSkulk rootkit. Our experimental results show
the detection approach is effective. As far as we know, we
are the first to demonstrate how nested VM can be used for
implementing a rootkit, while presenting an effective defense
to detect such a nested VM based rootkit.
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