
Houdini’s Escape: Breaking the Resource Rein of
Linux Control Groups

Xing Gao
University of Memphis
xgao1@memphis.edu

Zhongshu Gu
IBM Research

zgu@us.ibm.com

Zhengfa Li
Independent Researcher
zhengfali@foxmail.com

Hani Jamjoom
IBM Research

jamjoom@us.ibm.com

Cong Wang
Old Dominion University

c1wang@odu.edu

ABSTRACT
Linux Control Groups, i.e., cgroups, are the key building blocks to
enable operating-system-level containerization. The cgroups mech-
anism partitions processes into hierarchical groups and applies
different controllers to manage system resources, including CPU,
memory, block I/O, etc. Newly spawned child processes automati-
cally copy cgroups attributes from their parents to enforce resource
control. Unfortunately, inherited cgroups confinement via process
creation does not always guarantee consistent and fair resource
accounting. In this paper, we devise a set of exploiting strategies to
generate out-of-band workloads via de-associating processes from
their original process groups. The system resources consumed by
such workloads will not be charged to the appropriate cgroups.
To further demonstrate the feasibility, we present five case studies
within Docker containers to demonstrate how to break the resource
rein of cgroups in realistic scenarios. Even worse, by exploiting
those cgroups’ insufficiencies in a multi-tenant container environ-
ment, an adversarial container is able to greatly amplify the amount
of consumed resources, significantly slow-down other containers
on the same host, and gain extra unfair advantages on the system re-
sources. We conduct extensive experiments on both a local testbed
and an Amazon EC2 cloud dedicated server. The experimental re-
sults demonstrate that a container can consume system resources
(e.g., CPU) as much as 200× of its limit, and reduce both computing
and I/O performance of particular workloads in other co-resident
containers by 95%.

CCS CONCEPTS
• Security and privacy→ Virtualization and security.

KEYWORDS
Container; Control Groups; Docker

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354227

ACM Reference Format:
Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang. 2019.
Houdini’s Escape: Breaking the Resource Rein of Linux Control Groups. In
2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19), November 11–15, 2019, London, United Kingdom. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3319535.3354227

1 INTRODUCTION
Container technology has been broadly adopted in various com-
putation scenarios, including edge computing [1], microservice
architecture [2], serverless computing [3], and commercial cloud
vendors [4–6]. Compared to virtual machines, the elimination of
additional abstraction layers leads to better resource utilization
and improved efficiency. Thus, containers can achieve near-native
performance [7, 8].

Despite performance advantages, recently container techniques
also raise a number of security and privacy concerns, particularly
for the resource isolation [9], privilege escalation [10–12], confused
deputy attacks [13], and covert channels [14].

In the Linux kernel, the two key building blocks that enable
containers’ resource isolation and management are Linux Names-
paces (i.e., namespaces) and Linux Control Groups (i.e., cgroups1). In
addition, a set of security mechanisms (e.g., Capabilities, SELinux,
AppArmor, seccomp, and Security Namespace [16]) have also been
adopted or proposed to further enhance container security in de-
ployment.

Containers depend on cgroups for resource management and
control to prevent one container from draining system resources of
the host. The cgroups mechanism partitions a group of processes
and their children into hierarchical groups and applies different
controllers to manage and limit various system resources, e.g., CPU
time, computer memory, block I/O, etc. With a reasonable restric-
tion policy, cgroups can mitigate many known denial-of-service
exploits [17].

In this paper, we intend to systematically explore the methods
to escape the resource control of the existing cgroups mechanism,
and understand the security impacts on containers. Newly created
child processes automatically inherit cgroups attributes from their
parents. This mechanism guarantees that they will be confined
under the same cgroups policies. To break the resource rein of
cgroups, we devise a set of exploiting strategies to generate out-of-
band workloads via processes de-associated from their originating

1Based on the standard terminology of cgroups kernel documentation [15], we use
lower case cgroup and cgroups throughout this paper.

https://doi.org/10.1145/3319535.3354227
https://doi.org/10.1145/3319535.3354227

cgroups. These processes can be created from scratch to handle sys-
tem events initiated within a cgroup. In other cases, such processes
can be dormant kernel threads or system service processes that are
shared across the whole system and will be activated on demand.
Therefore, the corresponding consumed resources will be charged
to other “victim” cgroups.

To further reveal the security risks of the insufficiencies in the
existing cgroups mechanism, we conduct five case studies with
Docker containers showing the steps to escape cgroup resource
control in realistic system settings. In these case studies, we respec-
tively exploit the kernel handling mechanism of exceptions, file
systems and I/O devices, Linux logging systems, container engines,
and handling of softirqs. We conduct experiments on a local testbed
and a dedicated server in the Amazon EC2 cloud. Our experiments
show that, even with multiple cgroup controllers enforced, an ad-
versarial de-privileged container can still significantly exhaust the
CPU resources or generate a large amount of I/O activities without
being charged by any cgroup controllers.

Even worse, by exploiting those mechanisms in a multi-tenant
container environment, an adversarial container is able to greatly
amplify the amount of consumed resources. As a result of mount-
ing multiple attacks such as denial-of-service attacks and resource-
freeing attacks, the adversarial container can significantly slow-
down other containers on the same host, and gain extra unfair
advantages on the system resources. Our experiments demonstrate
that adversaries are able to significantly affect the performance
of co-located containers by controlling only a small amount of re-
sources. For instance, a container can consume system resources
(e.g., CPU) as much as 200× above its limit, and reduce both com-
puting and I/O performance of particular benchmarks of other
containers by 95%. Overall, the major contributions of this work
are summarized as follows:

• We present four exploiting strategies that can cause mis-
accounting of system resources, thus we can escape the re-
source constraints enforced by cgroup controllers.

• We conduct five case studies in Docker container environ-
ments and demonstrate that it is possible to break the cgroup
limit and consume significantly more resources in realistic
scenarios.

• We evaluate the impacts of the proposed approaches on
two testbeds with different configurations. The experimental
results show the severity of the security impacts.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of control groups. Section 3 presents the
strategies to escape the control of the cgroups mechanism and
analyzes their root causes from the kernel perspective. Section 4 de-
tails several cases studies on containers including the threat model,
attack vectors, and the effectiveness of various attacks on multi-
tenant container environments. Section 5 discusses the potential
mitigation from different aspects. Section 6 surveys related work
and we conclude in Section 7.

2 BACKGROUND
In the Linux kernel, cgroups are the key features for managing
system resources (e.g., CPU, memory, disk I/O, network, etc.) of a
set of tasks and all their children. It is one of the building blocks

enabling containerization. The cgroupmechanism partitions groups
of processes into hierarchical groups with controlled behaviors. All
child processes also inherit certain attributes (e.g., limits) from
their parent, and controlled by the mechanism as well. cgroups rely
on different resource controllers (or subsystems) to limit, account
for, and isolate various types of system resource, including CPU
time, system memory, block I/O, network bandwidth, etc. Linux
containers leverage the control groups to apply resource limits
to each container instance and prevent a single container from
draining host resources. For the billing model in cloud computing,
cgroups can also be used for assigning corresponding resources
to each container and measuring their usage. Below we briefly
introduce the background knowledge of cgroups hierarchy and four
typical types of cgroup controller which are normally applied in the
existing container environment, as well as the cgroup inheritance
procedure for newly spawned processes.

2.1 cgroups Hierarchy and Controllers
In Linux, cgroups are organized in a hierarchical structure where a
set of cgroups are arranged in a tree. Each task (e.g., a thread) can
only be associated with exactly one cgroup in one hierarchy, but
can be a member of multiple cgroups in different hierarchies. Each
hierarchy then has one or more subsystems attached to it, so that a
resource controller can apply per-cgroup limits on specific system
resources. With the hierarchical structure, the cgroups mechanism
is able to limit the total amount of resources for a group of processes
(e.g., a container).
The cpu controller. The cpu controller makes the CPU as a man-
ageable resource in two ways by scheduling the CPU leveraging
the CFS (completely fair scheduler, introduced in Linux 2.6.23). The
first one is to guarantee a minimum number of CPU shares: each
group is provisioned with corresponding shares defining the rela-
tive weight. This policy does not limit a cgroup’s CPU usage if the
CPUs are free, but allocate the bandwidth in accordance with the
ratio of the weight when multiple cgroups compete for the same
CPU resources. For example, if one container with the shares 512 is
running on the same core with another container with the shares
1,024. Then the first container will get a rough 33.3% CPU usage
while the other one gets the rest 66.7%.

The cpu controller was further extended in Linux 3.2 to provide
extra CPU bandwidth control by specifying a quota and period.
Each group is only allowed to consume up to "quota" microseconds
within each given "period" in microseconds. If the CPU bandwidth
consumption of a group (tracked by a runtime variable) exceeds
the limit, the controller will throttle the task until the next period,
when the container’s runtime is recharged to its quota. The cpu
controller is widely applied in multi-tenant container environment
to restrict the CPU usage of one container. If a container is setup
with the quota equal to 50,000 and the period equal to 100,000, then
the container can consume up to half of the total CPU cycles of one
CPU core.
The cpusets controller. The cpusets controller provides a mech-
anism for constraining a set of tasks to specific CPUs and memory
nodes. In multi-tenant container environments, the cpusets con-
troller is leveraged to limit the workload of a container on specific
cores. Each task of a container is attached to a cpuset, which contains

Figure 1: The overview of control groups and four exploiting strategies to generate out-of-band workloads.

a set of allowed CPUs and memory nodes. For the CPU scheduling,
the scheduling of the task (via the system call sched_setaffinity)
is filtered to those CPUs allowed by the task’s cpuset. Any further
live migration of the task is also limited to the allowed cpuset. Thus,
the cpusets controller can also be used to pin one process on a
specific core. The container user can also utilize user-space appli-
cations (e.g., taskset) to further set the affinities within the limit of
cpuset.
The blkio controller. The blkio cgroup controls and limits access
to specified block devices by applying I/O control. Two policies are
available at the kernel level. The first one is a time-based division of
disk policy based on proportional weight. Each cgroup is assigned
with a blkio.weight value indicating the proportion of the disk time
used by the group. The second one is a throttling policy which
specifies upper limits on an I/O device.
The pid controller. The pid cgroup subsystem is utilized to set a
certain limit on the number of tasks of a container. This is achieved
by setting the maximum number of tasks in pids.max, and the cur-
rent number of tasks is maintained in pids.current. The pid cgroup
subsystem will stop forking or cloning a new task (e.g., returning
error information) after the limit is reached (e.g., pids.current >
pids.max). As a result, the pid controller is effective for defending
against multiple exhaustion attacks, e.g., fork bomb.

2.2 cgroups Inheritance
One important feature of cgroups is that child processes inherit
cgroups attributes from their parent processes. Every time a process
creates a child process (e.g., fork or clone), it triggers the forking
function in the kernel to copy the initiating process. While the
newly forked process is attached to the root cgroup at the begin-
ning, after copying the registers and other appropriate parts of the
process environment (e.g., namespace), a cgroup copying function
is invoked to copy parent’s cgroups. Particularly, the function at-
taches the task to its parent cgroups by recursively going through
all cgroup subsystems. As a result, after the copying procedure, the
child task inherits memberships to the exact same cgroups as its
parent task.

For example, if the cpusets resource controller sets the CPU
affinity of the parent process to the second core, the newly forked
child process will also be pinned on the second core. Meanwhile,
if the cpu subsystem limits the CPU quota to 50,000 with a period
of 100,000 on the parent cgroup, the total CPU utilization of the
cgroup (including both the newly forked process and its parent)
cannot exceed 50% on the second core.

3 EXPLOITING STRATEGIES
In this section, we describe four strategies to escape the resource
control of the cgroupsmechanism, and explain the root causes why
the existing cgroups cannot track the consumed resources. As in-
troduced above, with the hierarchical structure, the cgroupsmecha-
nism can limit the total amount of resources for a group of processes
(e.g., a container). This is done by attaching resource controllers
to apply per-cgroup limits on specific system resources. Besides,
the inheriting mechanism in cgroups ensures that all processes
and their child processes in the same cgroup could be controlled
by cgroup subsystems without consuming extra system resources.
However, due to the complexity of the Linux kernel and difficulty
in implementing cgroups, we find that several mechanisms are not
considered, and thus can be utilized to escape the constraints of
existing cgroups. The key idea is to generate workloads running on
processes that are not directly forked from the initiating cgroups,
causing the de-association of the cgroups. Particularly, there are
four strategies, as illustrated in Figure 1, could be exploited by a
normal process in the user-space without root privilege to escape
the control of cgroups.

3.1 Exploiting Upcalls from Kernel
In the cgroups mechanism, all kernel threads are attached to the
root cgroup since a kernel thread is created by the kernel. Thus,
all processes created through fork or clone by kernel threads are
also attached to the same cgroup (the root cgroup) as their parents.
As a result, a process inside one cgroup can exploit kernel threads
as proxies to spawn new processes, and thus escape the control
of cgroups. Particularly, as the strategy ❶ shown in Figure 1, a
process can first trigger the kernel to initialize one kernel thread.

This kernel thread, acting as a proxy, further creates a new process.
Since the kernel thread is attached to the root cgroup, the newly
created process is also attached to the root cgroup. All workloads
running on the newly created process will not be limited by cgroup
subsystems, and thus break the resource control.

This mechanism, however, requires a user-space process to first
invoke kernel functions in the kernel space, then upcall a user-
space process from the kernel space. While it is natural to invoke
specific kernel functions (such as system calls) from user-space,
the reverse direction is not common. One feasible path is via the
usermode helperAPI, which provides a simple interface for creating
a process in the user-space by providing the name of executable
and environment variables. This function first invokes a workqueue
running in a kernel thread (e.g., kworker). The handler function
for the workqueue further creates a kernel thread to start the user
process. The final step, which invokes the fork function in the
kernel, attaches the created user process to the kernel thread’s
cgroups.

The usermode helper API is used in multiple scenarios, such
as loading modules, rebooting machines, generating security keys,
and delivering kernel events. While triggering those activities in
user-space usually requires root permission, it is still possible to
invoke the API in the user-space, which is discussed in Section 4.1.

3.2 Delegating Workloads to Kernel Threads
Another way to break the constraints of cgroups by exploiting
kernel threads is to delegate workloads on them, as the strategy
❷ shown in Figure 1. Again, since all kernel threads are attached
to the root cgroup, the amount of resources consumed by those
workloads will be accounted to the target kernel thread, instead of
the initiating user-space process.

The Linux kernel runs multiple kernel threads handling various
kernel functions and running kernel code in the process context. For
example, kthreadd is the kernel thread daemon to create other ker-
nel threads; kworker is introduced to handle workqueue tasks [18];
ksoftirqd serves softirqs; migration performs the migration job to
move a task from one core to another; and kswapd manages the
swap space. For those kernel threads, depending on their func-
tions, the kernel might run only a single thread in the system (e.g.,
kthreadd), or one thread per core (e.g., ksoftirqd), or multiple threads
per core (e.g., kworker). It has been constantly reported that, those
kernel threads can consume a huge amount of resources due to var-
ious bugs and problems [19–22]. Thus, if a process can force kernel
threads to run delegated workloads, the corresponding consumed
resources will not be limited by cgroups.

3.3 Exploiting Service Processes
Besides kernel threads maintained by the kernel, a Linux server
also runs multiple system processes (e.g., systemd) for different
purposes like process management, system information logging,
debugging, etc. Those processes monitor other processes and gen-
erate workloads once specific activities are triggered. Meanwhile,
many user-space processes serve as the dependencies for other
processes and run simultaneously to support the normal functions
of other processes. If a user process can generate kernel workloads
on those processes (strategy ❸ shown in Figure 1), the consumed

resources will not be charged to the initiating process, and thus the
cgroups mechanism can be escaped.

3.4 Exploiting Interrupt Context
The last strategy is to exploit the resource consumed in the inter-
rupt context. The cgroup mechanism only calculates the resources
consumed in the process context. Once the kernel is running in
other contexts (e.g., interrupt context, as the strategy ❹ shown
in Figure 1), all resources consumed will not be charged to any
cgroups.

In particular, the Linux kernel services interrupts in two parts: a
top half (i.e., hardware interrupts) and bottom half (i.e., software
interrupts). Since a hardware interrupt might be raised anytime,
the top half only performs light-weight actions by responding to
hardware interrupts and then schedules (defers) the bottom half
to execute. When executing an interrupt handler on the bottom
half, the kernel is running in the software interrupt context, thus it
will not charge any process for the system resources (e.g., CPU).
Since kernel 3.6, the processing of softirqs (except those raised by
hardware interrupt) is tied to the processes that generate them [23].
It means that all resources consumed in the softirq context will not
consume any quotas of the raised process. Moreover, the execution
of softirqs will preempt any workloads on the current process, and
all processes will be delayed.

Furthermore, if the workloads on handling softirqs are too heavy,
the kernel will offload them to the kernel thread ksoftirqd, which is a
per-CPU (i.e., one thread per CPU) kernel thread and runs at the de-
fault process priority. Once offloaded, the handling of softirqs runs
in the process context of ksoftirqd, and thus any resource consump-
tion will be charged on the thread ksoftirqd. Under this scenario,
it falls into the kernel thread strategy (the strategy ❷ shown in
Figure 1). To conclude, if a process (referred as process A) is able to
raise a large amount of software interrupts, the kernel will have to
spend resources on handling softirqs either in interrupt context or
the process context of ksoftirqd, without charging the process A.

4 CASE STUDIES ON CONTAINERS
In the previous section, we have discussed several potential strate-
gies to escape the resource control of cgroups. However, in realistic
container environments, exploitation is more challenging due to
the existence of other co-operative security policies. In this section,
we present five case studies conducted within Docker container
environments to demonstrate the detailed steps of exploiting the
cgroups weaknesses.
Threat model.We consider a multi-tenant container environment
where multiple Docker containers belonging to different tenants
share the same physical machine. The multi-tenant environment is
widely adopted today in both edge and cloud platforms. The system
administrators utilize cgroups to set the resource limit for each
container. Each container is de-privileged, set with limited CPU
time, system memory, block I/O bandwidth, and pinned to specific
cores. We assume an attacker controls one container instance and
attempts to exploit the insufficiencies in cgroups to (1) slow-down
performance of other containers, and (2) gain unfair advantages.

Servers Processor RAM Block Device NIC OS Linux Kernel Docker

Dell XPS Intel i7-8700 (12 x 3.20GHz) 16GB SATA (7,200 rpm) 100Mb/S Ubuntu 16.04 4.20 18.06
EC2 Dedicated Server Intel E5-2666 (36 x 2.9GHz) 64GB SSD (1,000 IOPS) 10,000Mb/S Ubuntu 18.04 4.15 18.06

Table 1: Servers used for evaluation.

Case Strategies Description Impact

Exception handling ❶ Trigger user-space processes Consume 200× more resources, DoS
Data Synchronization ❷ System-wide writenback DoS; RFA; covert-channel
Service journald ❸ Force journald to log container events Consume CPU and block device bandwidth
Container Engine ❷❸ Workloads on container engine and kworker Consume 3× more resources
Softirq handling ❷❹ Workloads on ksoftirqd and interrupt context Consume extra CPU

Table 2: Summary of all case studies.

Configuration. We use the Docker container to set the configura-
tion of cgroups through the provided interfaces. Besides, Docker
also ensures that containers are isolated through namespaces by
default. Especially, with the USER namespace enabled, the root
user in a container is mapped to a non-privileged user on the host.
Thus, the privileged operations within containers cannot affect the
host kernel. Our case studies are conducted in such de-privileged
containers.

To demonstrate the effectiveness of each exploitation, we ini-
tialize a container by setting multiple cgroup configurations on an
idle server, and measure the utilization of system resources on the
host. In order to emulate edge and cloud environments, we select
two testbeds to conduct our experiments: (1) a local machine in
our lab; (2) a dedicated host in Amazon EC2. The configurations
of both servers are listed in Table 1. Particularly, while our local
testbed is equipped with SATA Hard Disk Drive with 7,200 rpm,
we choose a much better I/O configuration on the EC2 server. The
storage of the dedicated testbed is provisioned SSD with 1,000 IOPS
(the default number is 400), and the throughput is about 20× better
than our local testbed. Thus, the local testbed represents a lower
performance node that might be deployed in an edge environment,
while the powerful dedicated server can emulate a multi-tenant
container cloud environment.
Ethical hacking concerns. Exploiting the cgroups will inevitably
generate host-level impact, which would potentially affect the per-
formance of all containers on the host server. Therefore, for our
experiments on Amazon EC2, we choose to use a dedicated server,
which is solely used by us and is not shared with other tenants.
In addition, it also allows us to simulate a multi-tenant container
environment and measure the system-wide impacts.
Result summary. Table 2 presents an overall summary of all case
studies, their corresponding exploiting strategies, and impacts. The
first case study is to exploit the exception handling mechanism
in the kernel, which involves strategy ❶. We find that exceptions
raised in a container can invoke user-space processes, and its conse-
quence is that the container can consume 200×more CPU resources

than the limit of cgroups. The second case is to exploit the write-
back mechanism for disk data synchronization, which involves
strategy ❷. A container can keep invoking global data synchro-
nization to slow down particular I/O workloads as much as 95%
on the host. The third case is to exploit system service journald
(through strategy ❸) which generates workloads consuming CPU
and block device bandwidth. The fourth case is to exploit the con-
tainer engine to generate extra unaccounted workloads (about 3x)
on both container engine processes (strategy ❸) and kernel threads
(strategy ❷). The last case is to exploit the softirq handling mecha-
nism to consume CPU cycles on kernel threads (strategy ❷) and
interrupt context (strategy ❹).

4.1 Case 1: Exception Handling
The first case is to exploit the exception handling mechanism in the
kernel. We find that it is possible to invoke the usermode helper
API and further trigger a user-space process (as the strategy ❶)
through exceptions. By repeatedly generating exceptions, a con-
tainer can consume about 200× CPU resources than the limit, and
thus significantly reduce the performance of other containers on
the same host (not limited to one core) by 85% to 95%.
Detailed analysis. The Linux kernel provides a dedicated excep-
tion handler for various exceptions, including faults (e.g., divide
error) and traps (e.g., overflow). The kernel maintains an Interrupt
Descriptor Table (IDT) containing the address of each interrupt or
exception handler. If a CPU raises an exception in the user mode,
the corresponding handler is invoked in the kernel mode. The
handler first saves registers in the kernel stack, handle the excep-
tions accordingly, and finally returns back to the user mode. The
whole procedure runs in kernel space and in the process context
that triggers the exception. Thus, it will be charged to the correct
corresponding cgroups.

However, these exceptions will lead to the termination of the
initial processes and raise signals. These signals will further trigger
the core dump kernel function to generate a core dump file for
debugging. The core dump code in the kernel invokes a user-space

Figure 2: Workloads amplification of exception handling. The server only runs one container that keeps raising exceptions.
The CPU resource used by the container is capped by the cpu controller as 100% one core, 10% of one core, and 5% of one core,
respectively. A container can exhaust a server with 36 cores using only 22% CPU utilization of one core. The number of PID is
further capped by the pid controller. With the number of active processes limited to 50, the container can still achieve 144×
amplification for CPU resources.

application from the kernel via the usermode helperAPI. In Ubuntu,
the default user-space core dump application is Apport, which will
be triggered for every exception. As mentioned in the previous
section, the system resources consumed by Apport will not be
charged to the container, since the process is forked by a kernel
thread, instead of a containerized process.

The newly spawned Apport instance will be scheduled by the
kernel to all CPU cores for the purpose of load balancing, thus
breaks the cpusets cgroup. Meanwhile, since the running of Ap-
port process consumes much more resources than the lightweight
exception handling (i.e., a kernel control path), if the container
keeps raising exceptions, the whole CPU will be fully occupied by
the Apport processes. The escaping of the cpu cgroup leads to a
huge amplification of the system resources allocated to a container.
Workloads amplification. To investigate such impact, we launch
and pin a container on one core. We set different limits of the
CPU resources for the container by adjusting period and quota.
The container entered into loops keeping raising exceptions. We
implement several types of exceptions which are available to user-
space programs. As the results are similar for different types of
exception, we use the div 0 exception as the example. The container
is the only active program that runs in our testbeds. Wemeasure the
CPU usage of our testbed from the top command and the CPU usage
of the container from the statistical tool of Docker. For the host
level usage, we aggregate the CPU usage of all cores together (so the
maximum usage of 12 cores is 1200%). We define the amplification
factor as the ratio of the host’s CPU utilization to the container’s
CPU utilization.

Figure 2 demonstrates that the usermode helper API can trigger
user-space programs to significantly amplify the CPU usage of a

container. On our local testbed, with only 7.4% CPU utilization
on one core used by our container, the whole 12 cores are fully
occupied. This problem cannot be mitigated after we reduce the
CPU resources allocated to the container to only 10% core (by
setting period to 200,000 and quota to 20,000). We further reduce
the CPU constraint of the container to 20% core and finally limit the
total utilization of 12 cores to 1,065%, giving an amplification factor
of 207X. Meanwhile, while the system memory usage has increased
by about 1GB, the memory usage of the container measured by
Docker is only 15.58MB.

We obtain similar results from the EC2 server: a 22.5% utiliza-
tion on the container is able to exhaust 36 cores. Since the CPU
frequency is less powerful than our local testbed, once we limit the
CPU resource of the container to 1/10 core, it can generate 1907%
utilization on all 36 cores. The amplification factor is around 192X.
The pid controller.While the amplification requires the container
to keep raising exceptions, we further use the pid cgroup subsystem
to set a certain limit on the number of tasks of our container. Again,
as demonstrated in Figure 2, the pid controller cannot diminish the
amplification result even when the number of active processes is
capped to 50, which is a very small number that might potentially
cause huge usability impact on container users. The amplification
factor can be reduced to 98× when we set a pid limit to 50 with
only 20% CPU computing ability of one core. On the EC2 server,
the amplification factor is around 144× by limiting the number of
pid to 50 on a container with 10% CPU computing ability of one
core.
Denial-of-service (DoS) attacks.When multiple containers run
on the same core, theywill share and compete for the CPU resources.
The Linux CFS system allocates the CPU cycles based on the share of

Servers Dell XPS EC2 Dedicated Server

CPU Memory I/O Read I/O Write CPU Memory I/O Read I/O Write

Baseline 632.5 6514.6 0.97 0.65 420.3 696.1 21.7 14.4
Exceptions (same core) 27.4 253.0 0.47 0.31 67.2 112.8 3.9 2.7
Exceptions (different cores) 35.2 291.5 0.81 0.54 76.8 129.8 1.8 1.23

Table 3: CPU based DoS attacks. The results are measured by sysbench. The unit for CPU is events per second. The units for
memory and I/O benchmarks are MiB per second.

each container. The CFS system ensures complete fairness, where
the container can fully utilize all resources in its slot. However,
if a malicious container can produce new workloads outside its
own cgroup, the CFS system will also allocate CPU cycles to those
processes, thus reduce the usage of other co-resident containers. At
the same time, the decreasing CPU usage might also impact other
performance, such as memory and I/O throughput.

In our experiment, we measure the impact of the DoS attacks
by exploiting the exception handling mechanism in the malicious
container. We run two containers: one malicious container and one
victim. We compare the performance of attacks with the cases that
the malicious container runs normal workloads (i.e., baseline). The
victim container runs different sysbench [24] workloads to measure
the performance.

The results on both servers are illustrated in Table 3. We first
set both containers on the same core with the exact same CPU
shares and quotas. We find that raising exceptions (which causes
core dump) can significantly reduce 95% on both CPU and memory
performance, and around 17% on I/O performance on our local
testbed. On the EC2 server, the number is around 85% for CPU
and memory performance, 82% on the I/O performance. This is
reasonable since raising exceptions causes a huge amount of user-
space core dump applications that compete for the CPU cycles with
the victim container.

We further change the core affinity of the malicious container by
pinning the container on a different core. Although the malicious
container is no longer competing CPU resources on the same core
with the victim, it still shows similar results on the performance
of the victim. The reason is that the main competitor for the CPU
resources is not the malicious container but those triggered core
dump applications.

This result demonstrates that a malicious tenant can easily utilize
a container to significantly reduce the performance of all other
containers on the same host and lower the quality-of-service of the
service vendor, and thus potentially cause huge financial loss with
little cost.

4.2 Case 2: Data Synchronization
Our second case is to exploit the writeback mechanism for disk
data synchronization, which is widely adopted for performance
consideration. The CPU only writes the updated data to the cache,
and data is written to disk later when the cache is evicted. Our
exploitation can escape cgroups since the lazy disk writeback mech-
anism decouples the process that initiates the I/O with the process

that synchronizes the disk write. There are multiple ways to trig-
ger the data synchronization, including periodically writeback and
insufficient memory. It could also be intentionally invoked by user
processes through system calls, such as sync (which writes back all
pending modifications to the cached file data to the underlying file
systems), syncfs (which synchronizes the file systems referred to
by the open files), and fsync (which transfers all modified data of
a file to its resident disk device). Those system calls are available to
Linux containers. Particularly, we find that sync could be exploited
to slow down system-wide I/O performance (e.g., more than 87%
degradation on sequence writing), launch resource-freeing attack,
and build covert channels.
Detailed analysis on sync. The first step of sync is to start a
kernel thread, which flushes all dirty pages contained in the page
cache to disk. It looks for all dirty inodes to be flushed by scanning
all currently mounted file systems, and flushes the corresponding
dirty pages. Since sync allows a process to write back all dirty
buffers to disk, any I/O operations have to wait for the flushing.
Even worse, the dirty buffers generated by other processes (might
belong to another container) will also be forced to write back to
disk.

A process within a container can repeatedly invoke the sync
with only an insignificant amount of workloads if no I/O operation
is conducted. However, at the same time, if there are I/O operations
on other co-resident containers, the sync will write back all the
dirty pages. In our experiment, we run a container that kept calling
sync. It did not cause any extra utilization beyond the constraint
of the container. However, once we run another container with
some simple write operations, the sync leads to a huge amount of
CPU wait time, which is generated by the combination of sync and
write operations. The CPU wait time is used to indicate the time
consumed for I/O waiting, and can still be used by other workloads.
However, the performance of particular workloads running on other
containers is significantly impacted.
blkio cgroup. As mentioned in Section 2.1, the blkio cgroup sub-
system can apply I/O control to block devices. While Docker only
supports limiting the relative I/O throughput by weights, the kernel
actually can set an upper limit to the cgroups. We use blkio to ap-
ply I/O control to the container running sync. Unfortunately, based
on the statistical tools of Docker, the I/O throughput of our con-
tainer is zero. Thus, the blkio controller cannot reduce the impact
of sync. The reason is that all the writeback workloads triggered
by sync are handled in kernel threads, and no I/O workloads are
charged to the container invoking the sync.

Figure 3: Performance degradation of I/O-based DoS attacks.
The performance is compared with the baseline case, where
an idle loop is running in the attacking container pinned in
different cores.

I/O-based DoS attacks. The calling of the system call sync inside
one container will keep invoking system-wide writebacks, regard-
less of whether the processes that issue the I/O operations are inside
the container or not. In some cases, the writeback will reduce the
system performance as particular workloads need to wait until the
writeback finishes. To test the effectiveness, we run two containers
pinned on two different cores. The only task the malicious con-
tainer does is to invoke the system call sync, thus incurring no I/O
operations by itself.

To measure the performance of the victim container, we run
the FIO benchmark [25] inside the victim container to measure
the I/O performance. In particular, we conduct four types of dif-
ferent FIO workloads, including sequence/random write, and se-
quence/random read. We also run the UnixBenchmark to test the
impact on the performance other than I/O. We compute the degra-
dation of the performance by dividing the result to the baseline case
where an idle loop is running in the malicious container. The re-
sults are demonstrated in Figure 3. For UnixBenchmark, we list the
workloads that have significant performance degradation. Overall,
we can see that the performance of the FIO benchmark running in
the victim is greatly impacted. By keep invoking sync in a mali-
cious container, the performance of all four types I/O operations
is significantly affected. For sequential write, the performance is
reduced to only 2% in our local testbed, and 13% on the EC2 server.
For UnixBenchmark, the performance of running shell scripts is
also severely reduced to less than half. For other benchmarks, the
degradation is about 5 to 10 percents.
Resource-Freeing Attack (RFA). The goal of RFA attacks [26] is
to free up specific resources for the attacker’s instances by compet-
ing for the bottleneck resources of the victim. In the situation of the
container environment, two containers are competing for system
resources such as CPU. The malicious container seeks to improve
the performance of its workload (referred as the beneficiary) to

(a) Local testbed.

(b) EC2 dedicated server.

Figure 4: Resource Freeing Attacks. The performance of
the beneficiary is measured by sysbench: higher score rep-
resents better performance. With a helper mounting RFA
attacks, the beneficiary can almost achieve similar perfor-
mance as the case without competition.

get more system resources. Thus, the malicious container runs an-
other lightweight program (referred as the helper) to free resources
used by the victim container so that the beneficiary can gain more
resources. The helper only consumes few system resources (thus
it almost has no impact on the beneficiary) but can significantly
impact the workloads running inside the victim container. For ex-
ample, in the malicious container, a beneficiary program can run
CPU-intensive workloads and compete for the CPU resources with
the victim container on the same CPU core. The victim container
runs an I/O-intensive workload so the CPU activity is bound with
the frequency of I/O operations: more I/O operations make the
victim container consume more CPU cycles to handle the requests.
Then, the malicious one runs a helper program to call sync periodi-
cally, trigger writebacks, and reduce the I/O activities of the victim.
As a result, the CPU usage of the victim container is reduced, and
the malicious one can gain more CPU resources.

We simulate the experiments by running two containers on the
same core. In the victim container, we simulate a web crawler case
where the container constantly writes a web page into a new file.
We measure the CPU and memory performance of the malicious
container using sysbench, where a higher value represents better
performance. The malicious container also regularly calls sync to
trigger global writebacks. For the baseline case, only the attacker’s
container is active and thus there is no competition for all system
resources. We then run both containers and compare the perfor-
mance of the attacker’s container to the baseline case. As we see

Time (s)

Pr
ob

ab
ilit

y

No Sync
 Sync

Figure 5: The distribution of the required time for opening
multiple files. The grey bar represents the case for opening
multiple files while running the system call sync simulta-
neously; The black bar represents the case without calling
sync.

in Figure 4, without RFA attacks, since two containers compete for
the CPU resources on the same core, the CPU performance (i.e.,
the white bar) is about half of the case without competition (i.e.,
the black bar), and the memory performance is about 1/3 of the
case without competition. However, by launching the RFA attacks
(i.e., the grey bar), the beneficiary inside the malicious container
can get much better performance on both testbeds. Particularly, on
our local server, the performance is almost the same as the case
without competition.
Covert Channels. Finally, we demonstrate that the insufficiencies
in cgroups could also be exploited by malicious attackers to build
timing-based covert channels across different cores. The idea is
to leverage the performance differences incurred by the disk data
synchronization. We measure the time for writing ten files in one
container, while running sync in another container on another core.
We repeat the experiments for 100 times and present the distribution
of the required time in Figure 5. We can observe the obvious timing
differences for opening the files between running sync and without
running sync. We build a proof-of-concept channel by leveraging
the performance differences, and are able to transfer data with a
rate of 2bits/s with an error rate 2%.

4.3 Case 3: System Process - Journald
Our third case is to exploit the systemd-journald service, which
provides a system service to collect system logging data, including
kernel log messages, system log messages (e.g., syslog call or Journal
API), and audit records via the audit subsystem. All related activities
are logged by a system process journald. In our case study, we find
that three categories of operations in a container can force the
journald process to log, causing 5% to 20% extra CPU utilization and
an average of 2MB/s I/O throughput, which can then be exploited
to impact other containers’ performance.
Detailed analysis. System processes of the host are attached to
cgroups that are different from the processes within containers,
since they are maintained by the OS to provide system-wide func-
tionalities. Thus, if the workloads inside containers can trigger
activities for those system processes, the resource consumed by
those activities will not be charged to containers’ cgroups, and thus

escape the resource control mechanism. However, most operations
inside containers are ignored by system processes running on the
host. For example, many activities of a user-space process running
on the host will be recorded by the journald. But if the process runs
within the container, those activities will be ignored. In order to
record events inside containers, system administrators on the host
need to change the configuration of the systemd-journald service.
Particularly, Docker provides an option to enable journald logging.

However, we find that, even without enabling the logging option,
under some particular circumstances, containers are still able to
generate non-negligible workloads on the journald system process.
In particular, we present three types of operations that lead to
workloads on the system process, and thus escape the control of
cgroups.
Switch user (su) command. The su command provides an ap-
proach to switching the ownership of a login session to root user.
The action of switching to root user will be recorded in the jour-
nald system process. The logging contains the information of the
process, users’ account, and the switching of the environment. The
exit of the user will also be recorded by journald service. With the
USER namespace, a root user inside a container is mapped to an
unprivileged user on the host. So a process inside the container
may have full privileges inside a USER namespace, but it is actually
de-privileged on the host. As the root user inside the container,
the su command is able to enter into another user. Unfortunately,
the activities caused by switching accounts inside a container will
trigger systemd-journald service to log the related information.
Add user/group. Inside a USER namespace, a container user can
add new groups or add new accounts inside existing groups. Those
activities will also be logged by the journald system process on the
host.
Exception. Finally, as mentioned previously, the kernel is unable
to distinguish the context of raised exceptions (inside a container
or not). Thus, the crash information caused by exceptions inside
a container will also trigger the logging activities of the system
process on the host.

All the above workloads will trigger a significant amount of
event logging in the journald. Again, we set one container with
one CPU core computing capacity to keep invoking the above
commands. In our local testbed, we observe a constant 3.5% CPU
utilization on journald, 2.5% CPU utilization on auditd, and 1% CPU
utilization on kauditd. In the EC2 server, the number is much bigger
due to its better I/O performance: we observe an average CPU
utilization about 20%. We also find that the average I/O throughput
is around 2MB/s on the journald process, while the I/O throughput
is zero in our container. This number will increase if we assign
more computing resource to the container.
DoS attacks. The logging activities in journald will generate a non-
negligible amount of I/O operations, which lead to the resource
competition with other containers. Tomeasure the consequence, we
run two containers on different cores of the host. In our malicious
container, we keep switching user (i.e., su) and quitting current user
(i.e., exit). In the victim container, we run the same benchmarks as
described in case 2.

Figure 6: Performance degradation of DoS attacks exploit-
ing journald. We compare the performance with the base-
line case, where an idle loop runs in the attacking container
pinned on a different core.

Figure 6 shows the results. Overall, we see system-wide perfor-
mance degradation. The attack by abusing journald will be more ef-
fective in servers with poor I/O performance (e.g., our local testbed).
As mentioned before, it can cause more than 2MB/s I/O throughput
in the journald process. We observe it can still slowdown other con-
tainers in the EC2 dedicated server with 1,000 IOPS (the throughput
is about 15MB/s). In a dedicated server with the default configu-
ration (e.g., 400 IOPS with the throughput about 6MB/s), we can
observe a more obvious result.
Residual effect. On a server with poor I/O performance, the writ-
ing workloads on the system process might surpass the I/O ability
of the server. As a result, a huge amount of logging event is queued,
and wait to be logged later. This will cause a residual effect: even
after the container stops its workloads (e.g., su), the system will
continue writing in the journald until the workloads in the queue
finish. The residual effect is conspicuous in our local testbed, and
last much longer than the running time of the workloads. The CPU
and I/O resources are being consumed even the container is com-
pletely idle. Even worse, those writing operations will significantly
affect the I/O performance of other containers and the host.

4.4 Case 4: Container Engine
The fourth case for containers is to exploit the container engine by
triggering extra workloads on both kernel threads (e.g., kworker)
and the container engine, which is required to run on the host to
support and manage container instances. Particularly, the container
engine runs as a privileged daemon on a system, and thus it is
attached to a different cgroup as container instances. The cgroup
limit on container instances will not be able to control the consumed
resources on the engine. Overall in this way, we find that a container
can increase the resource consumption to about three times.

Figure 7: TheCPUutilization ofDocker processes by exploit-
ing the container engine. The CPU resource of the container
(i.e., Container in the figure) is limited as 100% of one core.
However, Docker engine processes and kernel threads also
consume about 200% of one core CPU resources.

Detailed analysis.We first give a brief introduction to the Docker
container engine and its cgroup hierarchy. Docker creates a Docker
cgroup containing all container instances. Each container is identi-
fied by its ID and holds its all processes created by fork. Theoreti-
cally, all workloads running inside a container will be charged to
the container cgroup.

Besides, Docker is built on top of the Docker engine, where a
daemon process (i.e. dockerd) runs in the background handling the
management of Docker images. The Docker engine then commu-
nicates with containerd, a daemon to further use runC for running
containers. The dockerd process has multiple child processes for
each container instance. Those processes are attached to the default
cgroup for all system services.

Furthermore, users mainly control and manage Docker through
a command line interface (CLI) client (i.e. the docker process), which
interacts with the Docker daemon through Docker REST API. The
Docker CLI provides interfaces for users to create or execute a con-
tainer. It also provides multiple commands to set the configurations
on resource limitations related to underlying control groups. Simi-
lar to Docker engine processes, the Docker CLI does not belong to
the container’s cgroup either.

It is fairly easy to exploit the container engine to break the
control of cgroups. One simple approach is to exploit the terminal
subsystem. When a container user interacts with the tty device, the
data first passes through the CLI process and the container daemon,
and reaches the tty driver for further processing. Specifically, the
data is sent to the LDISC, which connects the high-level generic
interface (e.g., read, write, ioctl) and low-level device driver in the
terminal system. The data is flushed to LDISC by executing work
queues in the kworker kernel threads. As a result, all workloads on
the kernel threads and all container engine processes will not be
charged to the container instances.

We measure the workloads generated in container engine by
repeatedly showing all loaded modules in the host in the termi-
nal, and illustrate the results in Figure 7. Again, the utilization of
the container is limited to one core (as the Container in Figure 7).
Overall, with one core’s computing power (100% utilization), the
container can cause about 300% workloads on the host by abus-
ing docker engine processes. To breakdown the usage, the docker

process belongs to the host’s user cgroup; other docker processes
belong to a system cgroup: docker.service. The rest (most of them
are kernel thread kworker due to streaming workloads as explained
in Section 3.2) belongs to the root cgroup. We also conduct similar
experiments as Table 3 in Case 1. By exploiting the Docker con-
tainer engine, the attacker is able to reduce the performance of
CPU and memory about 15%.

4.5 Case 5: Softirq Handling
The last case is to exploit the softirq handling mechanism in the
Linux kernel. The current kernel defines 11 types of softirqs. Partic-
ularly, it is common for hardware interrupt handlers to raise softirqs.
While most hardware interrupts might not be directly raised by
containers, container users are able to manipulate workloads on
network interface generating NET softirq, or block devices gener-
ating Block softirq. The handling of those softirqs consumes CPU
resources on the process context of kernel thread (e.g., ksoftirqd) or
interrupt context.
NET softirq. Interrupt will be raised once the NIC finishes a packet
transmission, and softirqs are responsible for moving packets be-
tween the driver’s buffer and the networking stack. However, the
overhead raised by softirqs is negligible when the traffic bandwidth
is limited: previous work [27] demonstrates 1% overhead for net-
working traffic over 1 Gbps.

We find that, the overhead incurred by the networking traffic
will be greatly amplified by the firewall system (e.g., iptables) on the
server. The iptables, built on top of netfilter, provide a management
layer for adding and deleting packet filtering rules. The netfilter
hooks packet between the network driver and network stack. All
networking packets are first inspected by filtering rules, then for-
warded for further actions (e.g., forwarding, discarding, processing
by the network stack). As a result, the processing of networking
traffic under iptables is handled in softirq context, and thus will
not be charged to the container generating or receiving the traffic.
On Linux, Docker relies on configuring iptables rules to provide
network isolation for containers. Particularly, it might set multiple
rules for containers that provide web or networking services. The
rules exist even the container is stopped. Even worse, in some cir-
cumstances, containers can make changes to the system iptables
rules if the related flag is set as true. Once there is a considerable
number of rules, the overhead will be non-negligible.

We measure the overhead brought by the softirq handling net-
working traffic under different numbers of iptables rules, as illus-
trated in Figure 8. Particularly, we measure the CPU usage of all
ksoftirqd kernel threads, and the time spent on interrupt context
(from the hi and si of the top command). On our local testbed, the
capacity of NIC is 100 Mbit/s, and the networking traffic is about
20-30 Mbit/s, which is significantly smaller then the Gbps level as
in [27]. We can clearly see that significant overhead is incurred
by handling networking traffic, and is strongly correlated to the
number of rules. When the number of rules reaches 5,000, the CPU
will waste a huge amount of time on processing softirqs (around
16%), and not charge to the container which initiates the network-
ing traffic. Once there 10,000 rules in the server, the overhead is
about 40%, and most of them are concentrated on one single core.

Figure 8: Overhead incurred by handling networking traffic
with different numbers of iptables rules.

The EC2 server has a much powerful NIC with 10,000 Mbit/s
capacity and much higher bandwidth compared with our local
testbed. As a result, the overhead is slightly smaller compared with
our local testbed. In our experiments, with the networking traffic
about 300 Mbit/s, the traffic can still waste an in-negligible amount
of CPU cycles. As mentioned in Section 3.4, the handling of software
interrupts will either preempt current work, or consume CPU cycles
in the kernel thread. As a result, all other workloads on the same
core will be delayed.
BLOCK softirq. Another example of raising workloads on han-
dling softirq is the I/O operations on block devices. The Linux
kernel uses queues to store the block requests I/O, and adds new
requests into queues. Once the request handling is completed, it
raises softirqs, which are handled in the softirq context, to further
process the queue. Then, the basic idea of escaping cgroups utilizing
BLOCK softirq is similar to exploiting NET softirq.

In a container context, such workloads can be generated by keep-
ing querying the events in the completion queue and submitting
write or read operations. The impact is particularly obvious on de-
vices with poor I/O performance. To further quantitatively measure
the impact, we use a container fixed on one core running fio com-
mend to do sequential reading or writing. We choose a small block
size for the writing and a large size for the reading. We measure
the CPU utilization of multiple kernel threads such as kworker. The
workloads in the container are able to generate a non-negligible
amount of workloads on the kernel on our local testbed, including
16.7% of workloads on the kworker of the same core. Besides, for
the sequence I/O reading, the process of file allocation generated
an additional 3.9% utilization on jpd2 and 3.8% on kswapd. Finally,
we also measure the degradation by exploiting kworker. We create
workloads on the kernel thread kworker on the same core, and the
attacker was able to cause about 10% performance loss on the victim
measured by the sysbench benchmark.

5 MITIGATION DISCUSSION
In this section, we present our initial efforts and thoughts towards
counter-measuring security issues raised by the insufficiencies of

the existing cgroups mechanism. As most issues involve multiple
kernel subsystems, it is difficult to deploy a single solution to com-
prehensively and completely fix all problems. Also, resolving some
issues might need a redesign of the current resource accounting
system. In the following, we discuss potential mitigation methods
from different perspectives.

Intuitively, cgroups should have a fine-grained accounting mech-
anism by considering all workloads directly or indirectly generated
by a group of processes (or a container). For example, if a container
invokes another user-space process through a kernel thread, the
container’s cgroup should be passed by the kernel thread so that it
would also be copied to the new user-space process. As a result, the
newly invoked process belongs to the same cgroup as the container
instead of the root cgroup as the kernel thread. While such an ap-
proach can be applied to newly spawned processes with non-trivial
efforts, it is difficult to handle those processes already existed in
the system. Kernel threads like kworker, ksoftirqd are created by the
kernel to handle specific kernel workloads, which might be trig-
gered by different processes attached to different cgroups. The case
of the journald system process is similar: it logs all related events
raised by all processes, so it is unreasonable to attach the whole
journald process to a specific cgroup. Thus, rather than changing
the cgroup of those threads, a comprehensive mechanism should
track the system resources of a specific amount of workloads, and
charge them to the initial process. For example, Iron [27] tracks the
CPU cycles for handling every networking packet and charges to
the related process. However, such methods would undoubtedly
require a significant amount of kernel development efforts, as well
as bring a significant runtime overhead brought by instrumenting
multiple kernel functions for fine-grained resource tracking.

For some workloads, another arguable concern is whether the
cgroup should charge those system resources to the container or
not. From the consideration of privacy, the host server should not
record any sensitive information running inside a container in-
stance. The journald provides specific options to enable logging
activities inside a container. However, we show that, even without
enabling the logging option, the host still logs multiple events for
containers. The logging is conducted by the host, and thus should
not charge to the container. Besides, the core dump information
for the exception raised inside a container is not available to the
container user. Thus, one possible method is to disable all potential
logging or recording activities by distinguishing the container con-
text. Another approach to fully addressing the problem is to build an
extra cgroup subsystem specified for logging. All logging activities
would be accounted by the new logging cgroup subsystem.

Finally, some issues cannot be solved even with a fine-grained
accounting mechanism. For example, while the current cgroups
mechanism clearly mentions that the writeback workloads are not
counted, Linux kernel maintainers have started to develop new
cgroup mechanisms (i.e. cgroup v2) that leverages both memory
and blkio subsystems to track the writeback and charge containers
for the dirty pages. However, a malicious container can keep calling
sync without generating any I/O workloads. The writeback work-
loads are charged to the container that has I/O operations instead
of the malicious one. Meanwhile, it is unfair to charge everything to
the containers that invoke the data synchronization. Since simply
disabling all such functions will inevitably affect the usability, a

potentially feasible solution is to apply rate limit on those sensitive
operations.

6 RELATEDWORK
In this section, we survey some research efforts that inspire our
work and highlight the differences between our work and previous
research. We mainly discuss research works in the following two
areas:

6.1 Virtual Machine and Container
While VM [28] has ushered in the cloud computing era, the perfor-
mance is still not satisfying for its high latency and low density,
despite of a large number of research efforts [29–31]. Container
is becoming popular since it provides an alternative way of en-
abling lightweight virtualization and allows full compatibility for
applications running inside. Researchers are thus curious about
the performance comparison between hardware virtualization and
containers. Felter et al. showed that Docker can achieve a higher
performance than KVM in all cases by using a set of benchmarks
covering CPU, memory, storage, and networking resources [7].
Spoiala et al. [32] also demonstrated that Docker outperforms KVM
and could support real-time applications using the Kurento Media
Server to test the performance ofWebRTC servers. Morabito et al. [8]
further compared the performance between traditional hypervisor
(e.g., KVM) and OS-level virtualization (including both Docker and
LXC) with respect to computing, storage, memory, and networks,
and observed that Disk I/O is still the bottleneck of the KVM hyper-
visor. All of these works demonstrate that container-based OS-level
virtualization is a more efficient solution than traditional VM-based
hardware virtualization. While most previous research efforts focus
on understanding the performance of containers, few attempted to
investigate the effectiveness of the resource sharing of underlying
kernel mechanisms. We are among the first to systematically study
the performance and resource accounting problems of containers
caused by insufficiencies of control groups.
Container security. Besides performance, the security of con-
tainers has also received much attention from both academia and
industry. Gupta [33] first gave a brief overview of Docker security.
Bui [34] then presented an analysis on Docker containers in term
of the isolation and corresponding kernel security mechanisms.
While those previous works claim that Docker containers are fairly
secure with the default configuration, Lin et al. found that most of
the existing exploits can successfully launch attacks from inside
the container with the default configuration [17]. Grattafiori et
al. [35] summarized a variety of potential vulnerabilities of contain-
ers including problems in the memory-based pseudo file systems.
Gao et al. further conducted a systematical study on understanding
the potential security implications of the memory-based pseudo
file systems due to problems in namespaces [9, 14]. Lei et al. pro-
posed a container security mechanism called SPEAKER to reduce
the number of available system calls to applications [36]. Sun et
al. [16] developed two security namespaces enabling autonomous
security control for containers, and Arnautov et al. [37] proposed
to secure Linux containers using Intel SGX. The misconfigured

capabilities could also be exploited to build covert channels in con-
tainers [38]. Our work on cgroups further complements previous
research efforts on understanding the security of containers.

6.2 Cloud Security
Co-residence. Extensive research efforts have also been devoted
to understanding the security issues of clouds, particularly multi-
tenant clouds where different tenants share the same computing
infrastructures. In a multi-tenant cloud environment, attackers
can place malicious VMs co-resident with a target VM on the
same server [39] and then launch various attacks including side-
channel [40] and covert-channel attacks [41, 42]. Meanwhile, side
and covert channel attacks are common approaches to verify co-
residence on the same physical server. For example, cache-based
covert channels [43–47] are widely adopted since multiple instances
share the last-level caches on the same package. Zhang et al. further
demonstrated the feasibility of launching real side-channel attacks
on the cloud [48–50]. Besides the cache-based channel, other meth-
ods like memory bus [51], memory deduplication [52], core tem-
perature [53, 54] are also effective for covert-channel construction.
While multiple defense mechanisms have also been proposed [55–
60], two previous works [61, 62] show that it is still practical (and
cheap) to achieve co-residence in existing mainstream cloud ser-
vices. Wang et al. [63] conducted a large scale measurement study
on three serverless computing services and found several resource
accounting issues that can be abused by tenants to run extra work-
loads.
Denial-of-Service attacks. Since underlying computing resources
are shared among different tenants, the contention is inevitable.
Varadarajan et al. proposed resource-freeing attacks [26] to free
up resources used by victims so that the attacker’s instances can
gain extra utilization. Zhang et al. [64] investigated the impact of
memory DoS attacks and showed a malicious cloud customer can
cause 38× delay for an E-commerce website. For DoS attacks on I/O
performance, Huang et al. [65] proposed cascading performance
attacks to exhaust hypervisor’s I/O processing capability. Moreover,
multiple attacks [66–71] attempt to exhaust the shared infrastruc-
ture resources such as power facility so that servers in a data center
are forced to shutdown. Different from all previous work, our work
shows that the insufficiencies in cgroups can also be exploited to
launch multiple attacks in a multi-tenant container environment.

7 CONCLUSION
In this paper, we develop a set of strategies to break the resource rein
of Linux Control Groups. We demonstrate that inherited cgroups
confinement via process creation does not always guarantee con-
sistent and fair resource accounting. We can generate out-of-band
workloads via processes de-associated from their original cgroups.
We further present five case studies showing that it is feasible to
realize these attacks in Docker container environments. By exploit-
ing those insufficiencies of cgroups in a multi-tenant container
environment, malicious containers can greatly exhaust the host’s
resources and launch multiple attacks, including denial-of-service
attacks, resource freeing attacks, and covert-channel attacks. We
conduct experiments on both a local testbed and a dedicated server

in Amazon EC2 cloud, and demonstrate that a container can am-
plify its workloads as much as 200× above its limit, and reduce the
performance of other containers by 95%.

ACKNOWLEDGMENT
We are very grateful to the anonymous reviewers for their insightful
and detailed comments, which help us to improve the quality of
this work.

REFERENCES
[1] Edge Computing Extend containers safely to the farthest reaches of your network.

https://www.docker.com/solutions/docker-edge.
[2] Microservice Architecture. . http://microservices.io/patterns/microservices.html.
[3] Amazon Lambda. https://aws.amazon.com/lambda/.
[4] AWS Elastic Container Servicee. https://aws.amazon.com/ecs/.
[5] IBM Cloud Container Service. https://www.ibm.com/cloud/container-service.
[6] Google Kubernetes. https://cloud.google.com/kubernetes-engine/.
[7] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An Updated

Performance Comparison of Virtual Machines and Linux Containers. In IEEE
ISPASS, 2015.

[8] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs. Light-
weight Virtualization: A Performance Comparison. In IEEE IC2E, 2015.

[9] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining
Wang. ContainerLeaks: Emerging security threats of information leakages in
container clouds. In IEEE/IFIP DSN, 2017.

[10] CVE-2014-6407. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6407.,
2014.

[11] CVE-2014-9357. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9357.,
2014.

[12] CVE-2015-3631. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3631.,
2015.

[13] Mingwei Zhang, Daniel Marino, and Petros Efstathopoulos. Harbormaster: Policy
Enforcement for Containers. In IEEE CloudCom, 2015.

[14] Xing Gao, Benjamin Steenkamer, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. A Study on the Security Implications of Informa-
tion Leakages in Container Clouds. IEEE Transactions on Dependable and Secure
Computing, 2018.

[15] Control Group v2. https://www.kernel.org/doc/html/latest/admin-guide/cgroup-
v2.html.

[16] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. Security Namespace: Making Linux Security Frameworks
Available to Containers. In USENIX Security Symposium, 2018.

[17] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. A
measurement Study on Linux Container Security: Attacks and Countermeasures.
In ACM ACSAC, 2018.

[18] Working on workqueues. https://lwn.net/Articles/403891/, 2010.
[19] kswapd taking 100% CPU. https://www.redhat.com/archives/nahant-list/2006-

March/msg00033.html, 2006.
[20] Kworker, what is it and why is it hogging so much CPU?

https://askubuntu.com/questions/33640/kworker-what-is-it-and-why-is-
it-hogging-so-much-cpu, 2012.

[21] Why is ksoftirqd/0 process using all of my CPU?
https://askubuntu.com/questions/7858/why-is-ksoftirqd-0-process-using-
all-of-my-cpu, 2011.

[22] Kworker shows very highCPUusage. https://askubuntu.com/questions/806238/kworker-
shows-very-high-cpu-usage, 2016.

[23] Software interrupts and realtime. https://lwn.net/Articles/520076/, 2012.
[24] sysbench - A modular, cross-platform and multi-threaded benchmark tool.

http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html.
[25] Flexible I/O Tester. https://github.com/axboe/fio.
[26] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas Ris-

tenpart, and Michael M Swift. Resource-Freeing Attacks: Improve Your Cloud
Performance (At Your Neighbor’s Expense). In ACM CCS, 2012.

[27] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu, Karthick Rajamani, Alexandre
Ferreira, and Aditya Akella. Iron: Isolating Network-based CPU in Container
Environments. In USENIX NSDI 18), 2018.

[28] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor. In USENIX
ATC, 2001.

[29] Carl A Waldspurger. Memory Resource Management in VMware ESX Server.
ACM OSDI, 2002.

[30] AndrewWhitaker, Marianne Shaw, and Steven D Gribble. Scale and Performance
in the Denali Isolation Kernel. ACM OSDI, 2002.

[31] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My VM is Lighter (and
Safer) than your Container. In ACM SOSP, 2017.

[32] Cristian Constantin Spoiala, Alin Calinciuc, Corneliu Octavian Turcu, and Con-
stantin Filote. Performance comparison of a WebRTC server on Docker versus
Virtual Machine. In IEEE DAS, 2016.

[33] Udit Gupta. Comparison between security majors in virtual machine and linux
containers. arXiv preprint arXiv:1507.07816, 2015.

[34] Thanh Bui. Analysis of Docker Security. arXiv preprint arXiv:1501.02967, 2015.
[35] Aaron Grattafiori. NCC Group Whitepaper: Understanding and Hardening Linux

Containers, 2016.
[36] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,

and Qi Li. Speaker: Split-Phase Execution of Application Containers. In Springer
DIMVA, 2017.

[37] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. SCONE: Secure Linux Containers with Intel SGX. In USENIX
OSDI, 2016.

[38] Yang Luo, Wu Luo, Xiaoning Sun, Qingni Shen, Anbang Ruan, and Zhonghai
Wu. Whispers between the Containers: High-Capacity Covert Channel Attacks
in Docker. In IEEE Trustcom/BigDataSE/ISPA, 2016.

[39] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In ACM CCS, 2009.

[40] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev,
et al. Branchscope: A New Side-Channel Attack on Directional Branch Predictor.
In ACM ASPLOS, 2018.

[41] Dmitry Evtyushkin and Dmitry Ponomarev. Covert Channels Through Random
Number Generator: Mechanisms, Capacity Estimation and Mitigations. In ACM
CCS, 2016.

[42] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Microarchitectural
Minefields: 4k-Aliasing Covert Channel and Multi-Tenant Detection in IaaS
Clouds. In NDSS, 2018.

[43] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES,
and Countermeasures. Journal of Cryptology, 2010.

[44] Yunjing Xu,Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen, and
Richard Schlichting. An Exploration of L2 Cache Covert Channels in Virtualized
Environments. In ACM CCSW, 2011.

[45] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. A
High-Resolution Side-Channel Attack on Last-Level Cache. In IEEE DAC, 2016.

[46] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-Level
Cache Side-Channel Attacks are Practical. In IEEE S&P, 2015.

[48] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM
Side Channels and Their Use to Extract Private Keys. In ACM CCS, 2012.

[49] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-Tenant
Side-Channel Attacks in PaaS Clouds. In ACM CCS, 2014.

[50] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One Bit Flips,
One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In

USENIX Security, 2016.
[51] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-space:

High-speed Covert Channel Attacks in the Cloud. In USENIX Security, 2012.
[52] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. Security Implications of

Memory Deduplication in a Virtualized Environment. In IEEE/IFIP DSN, 2013.
[53] Davide B Bartolini, Philipp Miedl, and Lothar Thiele. On the Capacity of Thermal

Covert Channels in Multicores. In ACM EuroSys, 2016.
[54] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,

Lothar Thiele, and Srdjan Capkun. Thermal Covert Channels on Multi-core
Platforms. In USENIX Security, 2015.

[55] Yinqian Zhang and Michael K. Reiter. Düppel: Retrofitting Commodity Operating
Systems to Mitigate Cache Side Channels in the Cloud. In ACM CCS, 2013.

[56] Qiuyu Xiao, Michael K. Reiter, and Yinqian Zhang. Mitigating Storage Side
Channels Using Statistical Privacy Mechanisms. In ACM CCS, 2015.

[57] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis. In IEEE S&P,
2011.

[58] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang, Ruby B Lee, Haibo Chen,
and XiaoFeng Wang. Leveraging Hardware Transactional Memory for Cache
Side-Channel Defenses. In ACM AsiaCCS, 2018.

[59] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A Real-Time
Side-Channel Attack Detection System in Clouds. In Springer RAID, 2016.

[60] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A Software Approach to
Defeating Side Channels in Last-Level Caches. In ACM CCS, 2016.

[61] Zhang Xu, Haining Wang, and Zhenyu Wu. A Measurement Study on Co-
residence Threat inside the Cloud. In USENIX Security, 2015.

[62] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In USENIX
Security, 2015.

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. Peeking behind the curtains of serverless platforms. In USENIX ATC, 2018.

[64] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. DoS Attacks on Your Memory
in Cloud. In ACM AsiaCCS, 2017.

[65] Qun Huang and Patrick PC Lee. An Experimental Study of Cascading Perfor-
mance Interference in a Virtualized Environment. ACM SIGMETRICS, 2013.

[66] Zhang Xu, Haining Wang, Zichen Xu, and Xiaorui Wang. Power Attack: An
Increasing Threat to Data Centers. In NDSS, 2014.

[67] Chao Li, Zhenhua Wang, Xiaofeng Hou, Haopeng Chen, Xiaoyao Liang, and
Minyi Guo. Power Attack Defense: Securing Battery-Backed Data Centers. In
IEEE ISCA, 2016.

[68] Xing Gao, Zhang Xu, Haining Wang, Li Li, and Xiaorui Wang. Reduced cooling
redundancy: A new security vulnerability in a hot data center. In NDSS, 2018.

[69] Mohammad A Islam, Shaolei Ren, and Adam Wierman. Exploiting a Thermal
Side Channel for Power Attacks in Multi-Tenant Data Centers. In ACM CCS,
2017.

[70] Mohammad A Islam, Luting Yang, Kiran Ranganath, and Shaolei Ren. Why
Some Like It Loud: Timing Power Attacks in Multi-Tenant Data Centers Using
an Acoustic Side Channel. ACM SIGMETRICS, 2018.

[71] Mohammad A Islam and Shaolei Ren. Ohm’s Law in Data Centers: A Voltage
Side Channel for Timing Power Attacks. In ACM CCS, 2018.

	Abstract
	1 Introduction
	2 Background
	2.1 cgroups Hierarchy and Controllers
	2.2 cgroups Inheritance

	3 Exploiting Strategies
	3.1 Exploiting Upcalls from Kernel
	3.2 Delegating Workloads to Kernel Threads
	3.3 Exploiting Service Processes
	3.4 Exploiting Interrupt Context

	4 Case Studies on Containers
	4.1 Case 1: Exception Handling
	4.2 Case 2: Data Synchronization
	4.3 Case 3: System Process - Journald
	4.4 Case 4: Container Engine
	4.5 Case 5: Softirq Handling

	5 Mitigation Discussion
	6 Related Work
	6.1 Virtual Machine and Container
	6.2 Cloud Security

	7 Conclusion
	References

