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ABSTRACT

Advanced RISC Machines (ARM) processors have recently gained

market share in both cloud computing and desktop applications.

Meanwhile, ARM devices have shifted to a more peripheral based

design, wherein designers attach a number of coprocessors and

accelerators to the System-on-a-Chip (SoC). By adopting a System-

Level Cache, which acts as a shared cache between the CPU-cores

and peripherals, ARM attempts to alleviate the memory bottle-

neck issues that exist between data sources and accelerators. This

paper investigates emerging security threats introduced by this

new System-Level Cache. Specifically, we demonstrate that the

System-Level Cache can still be exploited to create a cache occu-

pancy channel to accurately fingerprint websites. We redesign and

optimize the attack for various browsers based on the ARM cache

design, which can significantly reduce the attack duration while in-

creasing accuracy. Moreover, we introduce a novel GPU contention

channel in mobile devices, which can achieve similar accuracy to

the cache occupancy channel. We conduct a thorough evaluation

by examining these attacks across multiple devices, including iOS,

Android, and MacOS with the new M1 MacBook Air. The experi-

mental results demonstrate that (1) the System-Level Cache based

website fingerprinting technique can achieve promising accuracy

in both open (up to 90%) and closed (up to 95%) world scenarios,

and (2) our GPU contention channel is more effective than the CPU

cache channel on Android devices.
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1 INTRODUCTION

While Advanced RISC Machines (ARM) processors have dominated

the mobile device market over the past decade, recently they have

also gained market share in both cloud computing and desktop

applications. Enterprises like Apple and Samsung have announced

plans to develop ARM based laptop devices that function with

the complete MacOS and Windows operating systems. Apple has

already released its M1 ARM chip to power its newest laptop and

desktop devices. Spurring this rapid expansion of ARM devices into

new markets is the adoption of a more peripheral based design that

attaches a number of coprocessors and accelerators to the System-

on-a-Chip (SoC). ARM has also adopted a System-Level Cache to

serve as a shared cache between the CPU-cores and peripherals.

This design works to alleviate the memory bottleneck issues that

exist between data sources and the accelerators, allowing higher

speed communication and increased performance.

If the marketshare of ARM processors in desktop and laptop

systems continues to increase, it is expected that attackers will

devote more resources to attacking the ARM architecture. While

extensive research has been conducted on exploring and securing

microarchitectural side channels on Intel’s x86 systems, far less

research has been focused on the ARM architecture. Furthermore,

as mobile OSes tend to deny low level control over the hardware,

most vulnerabilities are usually within non-essential APIs [5, 9,

21, 27, 54, 55] and are rapidly patched. ARM designers must be

careful to ensure that their designs are not vulnerable to malicious

attacks when exposed to a full fledged operating system, where

OS developers are able to exert far fewer restrictions on potential

attacker activities.

In this paper, we present an in-depth security study on recent per-

sonal computing devices (e.g., mobile phones and laptops) equipped

with ARM processors with the recent DynamIQ [34] design. Un-

like previous designs that only share cache within core clusters,

these devices contain multiple levels of cache and share the last-

level cache with other core clusters and accelerators (e.g., graphics

processing unit). Unlike x86 processors, these ARM devices utilize

heterogeneous core architectures, different caching policies, and

advanced energy aware scheduling to increase performance and

battery life. We endeavor to examine whether those advancements

(e.g., new cache architectures, the tight integration of accelerators,

etc.) make the ARM platform more difficult to attack compared

with with x86 platforms.

https://doi.org/10.1145/3485832.3485902
https://doi.org/10.1145/3485832.3485902
https://doi.org/10.1145/3485832.3485902
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Specifically, we focus on investigating cache occupancy chan-

nels [50], which continually monitor shared cache activities, to

fingerprint websites. We design a series of microbenchmarks to

better understand how ARM system behaviors (e.g., energy aware

scheduling, core selection, and different browsers) affect the cache

occupancy channels. Based on our preliminary study, we further

optimize the attack for these new ARM cache designs and consider

multiple different browsers, including Chrome, Safari, and Firefox.

The redesigned attack significantly reduces the attack duration

while increasing accuracy over previous cache occupancy attacks.

Furthermore, we introduce a novel GPU contention channel in

mobile devices, which can achieve similar accuracy as the cache

occupancy channel. To evaluate the proposed attacks, we conduct

a thorough evaluation across multiple devices, including iOS, An-

droid, and MacOS with the new, ARM-based, M1 MacBook Air.

The experimental results show that the System-Level Cache based

website fingerprinting technique can achieve promising accuracy

in both open (up to 90%) and closed (up to 95%) world scenarios.

Overall, the main contributions of this work are summarized as

followed:

• An examination of the system-level cache within new ARM

SoCs that utilize the DynamIQ design principle, especially

how different components and software scheduling affect

cache behaviors.

• A thorough evaluation of the cache occupancy side channel

attack on Android, iOS, and MacOS platforms implemented

in both native and JavaScript attack vectors.

• An analysis of JavaScript engine memory management and

how it impacts attack effectiveness.

• The discovery of a new GPU side channel attack that can be

utilized to fingerprint user behaviors on MacOS and Android.
The rest of this paper is organized as follows: Section 2 provides

necessary background information. Section 3 presents the threat

model and discusses the unique challenges that the ARM archi-

tecture creates for attackers in a shared cache occupancy attack.

Section 4 details our system design and Section 5 describes our

experimental setup. Section 6 analyzes our findings and Section 7

surveys related works. Finally, Section 8 concludes the paper.

2 BACKGROUND

2.1 Caching and Side-Channel Attacks

Modern computer systems utilize a tiered memory system to en-

hance their performance, from the smallest and fastest (i.e., L1)

to larger and slower (e.g., L2 and L3). Two important distinctions

in caching are exclusive and inclusive caching. Inclusive caching

guarantees that any memory address that is included in a cache

tier is also present in the cache tiers below it. For example, a value

in the L1 cache is also present in the L2 and L3 caches. By contrast,

an exclusive caching policy ensures that items are only present in

one level of the cache (e.g., an item in the L1 cache is not present

in the L2 or L3 cache). While there are various pros and cons to

both caching policies, Intel x86 processors mostly employ inclu-

sive caching, but recent ARM processors tend to utilize exclusive

caching policies.

As portions of the cache are shared between all processes, it

has been widely exploited for side channel attacks. By determining

big Cluster
core [0]

L1I L1D

core [1]

L1I L1D

L2
L2

core [0]

L1I L1D

LITTLE Cluster
core [1]

L1I L1D

core [2]

L1I L1D

core [3]

L1I L1D

Dynamic Shared Unit

System-Level Cache

GPU

DSP

ISP

L2

ARM DynamIQ Architecture

Figure 1: Overview of ARM’s DynamIQ architecture featur-

ing heterogeneous processor cores organized into high (big)

and low (LITTLE) performance clusters. The CPU clusters

and accelerators (GPU, ISP, and DSP) are all connected to a

shared system-level cache.

whether specific memory is in the cache (e.g., timing its access time),

attackers can infer the information of the victim. The ‘prime+probe’

attack [30, 40] attempts to identify vulnerable data locations that

indicate specific program flows. With a high resolution timer and

a predictable program, cache-based side channel attacks allow at-

tackers to extract private information such as encryption keys.

Cache Occupancy Channel. Shusterman et al. [50] suggested

two versions of the cache occupancy channel, cache occupancy and

cache sweeping. In cache occupancy, they designated a sample rate

(every 2ms) and accessed the entire buffer. If the buffer is accessed

faster than 2ms, the total time to access the buffer is recorded. If the

access takes longer than 2ms, a miss is recorded. In cache sweeping,

the cache buffer is continually accessed and the number of full

‘sweeps’ in each sampling period is recorded. At the beginning of

each sample period, the system starts accessing the cache from the

first location. They demonstrated that such techniques can be used

for robust website fingerprinting in x86 systems.

2.2 Consumer ARM System Design

Unlike x86 systems which utilize homogeneous core designs in

their processors, consumer ARM devices (as opposed to ARM based

server platforms which are out of the scope of this work) differ

greatly and utilize a heterogeneous architecture.

ARM big.LITTLE and DynamIQ. In ARM, the big.LITTLE

design was first developed to overcome the battery limitation in

mobile devices. The big.LITTLE architecture consists of a SoC made

from two discrete computing clusters, one low power group of cores

and one high power group [31]. With a number of new scheduling

techniques, the architecture allows the mobile OS to utilize high
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and low power cores for different tasks to extend battery life. In

ARM, the cache system is also redesigned. Instead of having a pri-

vate and shared cache architecture with an identical size across all

cores, big.LITTLE utilizes differently sized caches, wherein the high

performance cores have access to larger L1/L2 caches than their

lower performance counterparts. As the L2 caches of the different

core clusters are not shared between clusters, a large amount of

cache coherency traffic is necessary to facilitate switching tasks be-

tween the high and low performance cores, resulting in suboptimal

performance.

To overcome this performance limitation, a newer system ‘Dy-

namIQ’ [34] was developed for ARM. The DynamIQ system al-

lows greater modularity and design freedom than the original

big.LITTLE system. DynamIQ allows the processor designers to

create multiple clusters of heterogeneous processors (instead of

just two), and employs a shared L3 cache to improve computational

performance between processor clusters, as shown in Figure 1. Our

work explores the potential security vulnerabilities in this shared

cache architecture.

Accelerators. Due to the explosive popularity of machine learn-

ing applications in image and signal processing domains, mobile

devices have begun to require a low power method for execut-

ing neural network inference functions. To resolve this issue, cur-

rent mobile devices make use of a number of accelerators or co-

processors to enable advanced functionalities within their energy

budget. Recent versions of Apple’s custom A series chips, Qual-

comm’s Snapdragon, and Samsung’s Exynos chips have begun to

increase their reliance on accelerator peripherals. Those chips in-

clude dedicated digital signal processors, image signal processors,

motion co-processors, neural processing units, and graphics pro-

cessing units.

The inclusion of numerous accelerators creates a major system

design issue. To utilize a co-processor, it must be supplied with a set

of instructions and data to operate on. The co-processor must then

complete its calculations and return the data to the main processor.

In a non-integrated SoC, communication with co-processors must

take place over a bus, and this can severely limit any performance

speedup. Nvidia has attempted to resolve part of this problem on

x86 with GPUDirect [15], allowing for direct transfer of data to

the GPU without the CPU. To speed up co-processor performance

in ARM, the DynamIQ system utilizes a system-level cache that is

shared with these accelerators. ARM calls this technology cache

stashing [32], which allows tightly coupled accelerators (such as

GPUs) to directly access the shared L3 cache and in some cases

directly access L2 caches.

2.3 Website Fingerprinting and Timer
Restrictions

Website fingerprinting attacks identify the websites that a user

visits. Usually this involves training a classification system to dis-

tinguish a series of sensitive websites that the attacker is interested

in. The motivations for website fingerprinting can range from a

desire of learning information about a target (e.g., political views,

health issues, and gambling activity) to the construction of a user

profile for advertisement tracking. Typically, website fingerprint-

ing attacks involve an attacker that observes encrypted network

traffic and attempts to classify the user’s activities through fea-

tures extracted from the packet stream (e.g., timing, packet size,

and packet order) [4, 14, 20, 41, 43]. However, such attacks require

access to the network traffic of the victim. To sidestep this require-

ment, researchers have identified that the action of downloading

and rendering a website inevitably leaves a trace in the CPU and

cache activities of the victim system, which can be monitored via

local side channel to identify the victim’s website visiting activi-

ties [36, 50].

Motivated by high profile side channel attacks like Spectre [23]

and Meltdown [29] that utilize the JavaScript performance.now()

command to perform nanosecond resolution timing measurements,

browser and mobile operating system designers have worked to

limit access to system APIs and high resolution timer resources.

Specifically, in response to the Spectre andMeltdown attacks, browser

manufacturers have greatly reduced the precision of the

performance.now() counter [42] to between 50 microseconds and

1 millisecond. With the typical difference between cache misses

and hits being defined in 10s of nanoseconds, this resolution is

insufficient to successfully launch most side channel attacks.

3 THREAT MODEL AND CHALLENGES IN
ARM

3.1 Threat Model

This work studies the ability of an attacker to fingerprint a user’s

website browsing activity via a low frequency contention channel

in either the shared cache or the GPU of an ARM SoC. The attacker

is motivated to track the user’s web activity for some malicious

purposes, such as to better identify the victim’s interests for tar-

geted advertising or to covertly determine sensitive information

(e.g., medical condition, sexual/political preferences, etc.) for the

purpose of discrimination or blackmail. We consider two typical

scenarios in website fingerprinting: (1) closed world, where the

victim only visits websites from the list of sensitive websites; and

(2) open world, where users might also visit some non-sensitive

websites. To accomplish the fingerprinting task, the attacker can

pre-profile a list of sensitive websites and build a model based on

specific browsers (e.g., Chrome/Firefox/Safari) and devices (e.g.,

MacBook/Smartphone).

To evaluate the potential threat from this attack, we mainly

examine a web-based attacker who is only capable of delivering

JavaScript from a website. We also conduct an investigation of an

app based attacker who is able to trick a user into installingmalware,

but impose additional limits, analyzing how well the attack would

function if the OS clock functions were similarly limited to those

of web browser1.

Web-Based Attacker. The web-based attacker attempts to ex-

ploit the cache occupancy channel in the context of the web browser,

delivering a JavaScript file to the user via a malicious advertisement

on a legitimate page or by tricking the user into visiting a malicious

web page. We assume that the attacker is unable to exploit any

vulnerabilities in the browser. Instead, (s)he attempts to create a

cross tab attack scenario, wherein the user leaves the tab with the

1Researchers have demonstrated that the high precision timers available to native
programs can produce very accurate attacks. OS developers may move to reduce the
attack surface by reducing the granularity of available timers in the future
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malicious JavaScript open and continues to browse other websites

in a different tab. The malicious JavaScript in the background tab

continues to run and attempts to monitor the user’s activity. This is

reasonable as all current web browsers enable users to visit multi-

ple websites at the same time in different browser tabs. While tabs

are isolated from each other in software, they are not necessarily

segregated in hardware. Furthermore, the web-based attacker is

restricted by the privileges granted to JavaScript, and are subject to

the reduced precision timers, memory management, and scheduling

constraints that the browser enforces.

App-Based Attacker.We assume that the app-based attacker

is capable of tricking the user into installing an application or

program onto their device that contains the malicious observation

code. The code can be integrated into a benign application such as

a music player, fitness tracker, or social media application, and is

therefore capable of running a disguised process to monitor user

activities. Unlike the web-based attacker, the app-based attacker is

not restricted to only JavaScript and has access to the APIs provided

by the operating system, allowing better control over memory

management and scheduling. However, the attacker is not granted

any super-user privileges and does not utilize any exploit to access

privileged commands.

Note that, in both scenarios, the application/JavaScript does not

necessarily need to be sourced from a purely malicious entity. Such

a tracking service could be deployed in social media applications

to better identify and profile user activities. Large ad-supported

companies like Google or Facebook could also greatly benefit from

deploying a similar script on their webpages, continually monitor-

ing users browsing activities to better target advertisements.

3.2 Cache Occupancy Challenges in ARM

Exploiting the occupancy statistics of the last-level cache has been

studied with varying degrees of success across x86 systems [6, 44,

50]. In parallel to this work, Shusterman et al. [49] performed a

cursory proof that the cache occupancy could also be applied to

ARM systems. We greatly expand their work, investigating a num-

ber of different configurations and optimizations across multiple

browsers and devices. To motivate these optimizations, we first

describe unique challenges that the ARM ecosystem presents to the

cache occupancy channel.

ARM Cache Contention. ARM systems differ from common

x86 architectures in multiple aspects. ARM offers exclusive and

inclusive caching at different levels, and utilizes heterogeneous

architectures in which multiple different core architectures and

cache layouts may be present on the same chip. Also, each type of

core may run at different frequencies. Those factors increase the

difficulty of exploiting the cache occupancy channel in the ARM

architecture. Since the system-level cache is the only cache level

shared by all processor cores in ARM, if the scheduler moves the

spy and victim processes between different core types, it can greatly

affect the observed cache profile.

Due to the exclusive nature of the last-level cache in ARM, when

a process migrates the data in its L1/L2 caches, the data will not

be present in the last-level cache, but in the L1/L2 caches of its

previous location. Upon migrating a process from one core type

to another, some ARM processors invalidate the entirety of the

previous cores’ caches, while others may allow that data remain

until it is evicted. In either case, in an exclusive cache setup, any

reads to locations that were in the L1/L2 cache of the previous

location will be serviced from the L1/L2 and have no impact on the

L3 cache. This greatly hinders the cache occupancy channel: while

in an inclusive cache, one could reliably observe L3 occupancy (if

the value were removed from L3, it would be removed from all

higher levels), the exclusive cache can serve the value from either

the previous L1/L2 or main memory, giving no indication as to the

status of the L3 cache2.

Exclusive caching also has drawbacks with respect to buffer size.

In an x86 system with inclusive caching, the spy process evicting

the entire L3 cache would also remove any data in the L1/L2 caches.

Thus, when the victim process accesses data, it always causes ac-

tivities in the L3 cache3. However, in an ARM system, if a victim

process accesses a buffer small enough to fit in the L1/L2 cache,

a spy process that is monitoring the entirety of the L3 cache will

never see this activity. While this behavior might be unnoticed, and

even preferable, to a program under normal circumstances, it is not

ideal for the cache occupancy channel. The cache occupancy chan-

nel assumes that continually accessing a large buffer in cache will

completely evict any data of the victim process from the L3. Also,

it assumes that any access to memory will bring data back into the

L3, making it observable. Thus, to better suit ARM processors, the

access patterns and buffer sizes for the cache occupancy channel

should be carefully considered.

Browser Differences. Further complicating the applicability of

the cache occupancy channel is the memory management of a web

browser. The web-based attacker must work within the constraints

of the JavaScript engine within each web browser. Today’s pop-

ular web browsers, including Google Chrome, Apple Safari, and

Mozilla Firefox, utilize different JavaScript engines. Furthermore,

these JavaScript engines must interact with the system scheduler.

Different OSes (e.g., Google’s Android, Apple’s iOS, and MacOS)

likely utilize carefully tuned schedulers to maximize the perfor-

mance. Finally, the JavaScript engines of the major browsers will

manage memory in different ways, and the garbage collector of

each JavaScript engine will handle memory management in a way

that is not accessible to the attacker. Thus, a one size fits all ap-

proaches to cache occupancy fingerprinting is certainly not ideal as

each browser may act very differently, even on the same hardware.

4 UNDERSTANDING ARM CACHE
OCCUPANCY

We first design a series of microbenchmarks to better understand

ARM system behaviors. In particular, we investigate how energy

aware scheduling, core selection, and different browsers impact the

cache occupancy channel.

2The L3 cache on ARM also maintains the ability to be selectively inclusive if an item is
utilized by more than one core [35], however, the cache occupancy JavaScript channel
does not utilize shared memory and should not experience this behavior.
3In some x86 server CPUs (specifically Skyake-X CPUs from Intel, the L3 is ‘non-
inclusive’, meaning that it is neither fully inclusive or exclusive. Consumer CPUs from
Intel have not yet adopted this layout.
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Table 1: Devices and High Power (HP) and Low Power (LP) core configurations utilized in this work.

Device Core Configuration High Power L1/L2 Low Power L1/L2 System Level Cache

iPhone SE 2
2x Lightning (HP)

4x Thunder (LP)

128KB L1i / 128KB L1D / Core

8MB L2 Shared

Unknown L1i / 48KB L1D / Core

4MB L2 Shared
16MB

Android
4x Kryo 385 Gold (HP)

4x Kryo 385 Silver (LP)

64KB L1i / 64KB L1D / Core

256KB L2 / Core

64KB L1i / 64KB L1D / Core

128KB L2 / Core
2MB

MacBook Air
4x FireStorm (HP)

4x IceStorm (LP)

192KB L1i / 128KB L1D / Core

12MB L2 Shared

128KB L1i / 64KB L1D / Core

4MB L2 Shared
16MB

4.1 Test Devices

We select three commonly utilized devices: an iPhone SE 2 to test

iOS, a Google Pixel 3 for Android, and a MacBook Air 2020 with

M1 chip for MacOS. The detailed information about each device is

included in Table 1. In the case of the Apple devices where specific

cache sizing values are not provided by Apple, we rely on commu-

nity microbenchmarking [11, 12] to provide detailed cache level

size analysis.

We employ a Node.JS server to serve HTML and JavaScript re-

sources to our test devices. As JavaScript is single threaded, our

JavaScript microbenchmarks run within a web worker context4.

4.2 Cache Access Pattern

Modern ARM processors utilize cache prefetchers to learn data

access patterns and bring data into the cache beforehand. To accu-

rately measure the cache performance of a device, we must develop

cache access patterns to defeat the most common prefetching algo-

rithms, next line and stride prefetching.

The next line prefetcher exploits spatial locality, fetching the

next cache line of memory into the cache on every access. The

stride prefetcher actively learns a pattern in data access and fetches

the data based on the pattern.

It has been demonstrated that the stride prefetcher is limited

in recognizing patterns within memory pages and can only keep

track of a certain number of patterns before the hardware pattern

matching is exhausted [7]. To evade the two prefetchers, we follow

a similar access pattern to that of [7]. We create a large array of

buffers which spans multiple memory pages. We then access the

first, third, fifth, etc. line from every page. Accessing every other

line avoids any impact of the next line prefetcher and accessing

one item from each buffer before looping back to the first exhausts

the ability of the stride prefetcher to learn a pattern.

4.3 Foreground vs. Background Activity

We next design a microbenchmark to identify cache behavior dif-

ferences between foreground and background activity. Specifically,

we seek to understand whether the scheduler treats foreground

and background browser tabs differently.

To this end we create a large buffer and access increasingly large

portions in the prefetcher thwarting manner described previously,

normalizing the buffer access times with respect the number of

memory accesses to better understand the impact of the scheduler

4Web workers were designed to facilitate long computations in a different process,
while allowing the main UI thread to remain responsive.
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Figure 2: iPhone SE 2 Cache Average Memory Access Time

and its use of the different core designs. To assess background activ-

ity, we run the script in a background tab while the foreground tab

is set to www.google.com. We also find that writing to the accessed

buffer (e.g., increment a counter stored at each array location) in-

creases the consistency of experiments. This can be attributed to a

more complex instruction stream reducing the amount of optimiza-

tion and/or reordering that can occur, and thereby better exposing

the cache sizes.

Testing this on the iPhone SE 2 demonstrates very different fore-

ground and background cache behaviors, as shown in Figure 2.

Background accesses are nearly 10x slower than foreground ac-

cesses, and the background memory access time curve is signifi-

cantly different from the foreground access curve. The foreground

curve experiences multiple sharp increases in cache access time,

indicating that the multiple levels of cache are present (e.g., L1, L2,

and L3) while the behavior of the background process shows far less

distinguishable increases in timing. Similar behavior is observed

on the Google Pixel 3.

4.4 Browser Memory Management

In a desktop operating system like MacOS, major browsers (e.g.,

Google Chrome, Apple Safari, and Mozilla Firefox) typically utilize

their own rendering and JavaScript engine. Also, the M1 Macbook

Air is the first device running a desktop/laptop operating system

utilizing a heterogeneous processor. We therefore examine cache

behaviors on the M1 MacBook Air across these major browsers.

Figure 3 shows the results for different browsers. Most notably,

Apple’s Safari is the only browser that seems to take advantage

of the heterogeneous cores with a 10x slowdown in access speed
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Figure 3: MacBook Air M1 Cache Average Memory Access Times with Different Browsers.

and a noticeably different timing pattern for the background tab.

This indicates that the foreground and background processes were

impacting different caches (the different cache architectures of

the high vs. low power cores). Both Google Chrome and Mozilla

Firefox seem to maintain the same access speed for their respective

foreground and background processes, indicating that background

tabs are not relegated to the low power cores.

We also observe that the overall shape of the timing curves

for cache accesses is unique to each browser, indicating that even

though the access pattern was the same, the memory allocation

algorithms for each JavaScript engine are vastly different. Thus,

understanding how these allocation strategies affect cache timing

can greatly increase the accuracy of a potential cache occupancy

attack. Furthermore, different compiler optimizations and code

differences could further impact the memory access differences

that we observe across platforms.

5 ATTACKS ON ARM

In this section, we present our optimizations to the cache occupancy

channel for various ARM devices. To determine the effectiveness

of various modifications to the channel, we design a robust data

collection system employing the Appium [1] and Selenium [47]

frameworks to control our iOS, Android, and MacOS devices.

5.1 Setup

Data Sets.Tomonitor the accuracy of the cache occupancy channel,

we utilize an abbreviated open world dataset, which consists of

multiple accesses to sensitive and non-sensitive websites, marking

all non-sensitive websites as a single class, regardless of domain.

Particularly, we utilize a dataset similar to that of [50] to enable

better comparison with the x86 version of the cache occupancy

channel. Our dataset consists of 1,500 website accesses, containing

100 accesses to the top 10 Alexa websites (i.e., sensitive websites)

and 1 access to 500 other websites not within the Alexa top 100

(i.e., non-sensitive websites). To prevent any ordering bias, we

generate a random order for these 1,500 accesses and then utilize

the same order for every experiment. We believe this randomization

is important, and previous works do not discuss the access order.

Unlike network based fingerprinting attacks, the CPU cache

may retain some of its state between website accesses, causing the

machine learning system to identify incorrect features and falsely

boost the accuracy of the test if websites are repeatedly accessed in

the same order. Note that this abbreviated dataset is used in this

section to optimize the side channel attacks on ARM. In the next

section, we conduct a thorough evaluation using a significantly

larger dataset.

Machine Learning Approaches. To evaluate the performance

of our optimizations we utilize the Rocket [8] transform paired

with ridge regression. The classifiers are trained and tested with a

cross validation strategy, wherein we utilized 90% of the data for

training, and 10% of the data for testing. We report the average of 5

rounds of training and testing.

5.2 Optimizing Cache Occupancy Attack

We have demonstrated in Section 4.3 that, unlike previous studies

in homogeneous CPU architectures, cache accesses on low power

cores can be nearly 10x slower. Combining this with the fact that

browser manufacturers may continue to decrease the granularity of

their timing sources to prevent attacks, it is necessary to re-examine

the best way to measure cache occupancy on ARM.

Examining the Snapdragon 845 processor in the Google Pixel

3, we find that the low power cores are based on the Cortex A55

design from ARM and that the Snapdragon 845 processor has been

configured to utilize 2MB of the system-level cache. Using the in-

formation from our previous microbenchmarks on the Google Pixel

3, it takes about 60ns to access a single cache value at a 2MB buffer

size. Since the Snapdragon 845 employs a 64 Byte cache line size,

to avoid prefetching, we should access every 32nd integer in our

2MB buffer. As the buffer can hold ≈500,000 integers, this results in

≈ 16, 000 accesses. At 60ns per access, this equates to just under 1ms.

While the Snapdragon 845 has configured the system-level cache to

be 2MB, the Cortex A55 supports up to 4MB of shared cache [33],

and the accesses may take almost 2ms with no background activity,

and will almost certainly take more than 2ms if the processor is

performing another task. Thus, if the system described in [50] is

used without modification, every trace would be nearly identical

with only overlong accesses, and hence no identification would be

possible. To this end, we propose a series of modifications that work

for devices, regardless of their access speed to cache. This enables

attackers to adjust the buffer size for the device and be worry-free

about adjusting the sample rate if the device happens to be very

slow.
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Modifications. The first modification entails recording the num-

ber of cache accesses within a set time frame, instead of the time

to complete accesses. This system is far less affected by changes in

the accuracy of clock. The system will always record the number of

actual cache accesses, a number that is far more fine-grained than

the time to access the whole cache. To enhance system performance

on slower devices, we also increase the access time window to 4ms

to increase the number of possible accesses. With these initial mod-

ifications, we achieve 75% open world accuracy in the abbreviated

10-site test (Section 5.1) on the Google Pixel 3.

With the first enhancement, the system checks the number of

total cache accesses in the time period. It then needs to frequently

check the clock to see if the time period expires. We find that

the Android system only completes about 2,500 accesses per 4ms

window, which is far lower than the original predicted value of

about 16,000 accesses per 1ms window. Upon profiling the page, we

discover that the vast majority of the code runtime is consumed by

the performance.now() call to check whether the time window is

elapsed. Since the ARM last-level caches are exclusive, the attack

might have several issues if the cache occupancy system continually

accesses the same beginning elements of the buffer without ever

accessing the entirety of the buffer. In the worst case, if the number

of accesses can fit in the L1 and L2 caches, the script may never

impact the L3 cache, providing minimum useful information for

the task of website fingerprinting.

We thus further employ two enhancements. The first enhance-

ment accesses the buffer in a circular fashion: if the script only

completes 2,500 accesses in the time window, it will access the

2,501st element at the beginning of the next window. It only re-

turns to the first element once all elements have been visited. This

ensures that the buffer eventually fills the L3 cache and that sequen-

tial observations cover different parts of the cache. We find that this

technique increases the accuracy of the 10-site open world dataset

to about 83%. The next enhancement is to decrease the amount of

time that the script spends on checking the time. Instead of check-

ing after every access, we check after every 20 cache accesses. This

enhancement (without circular accesses) increases the accuracy to

84%. We then combine both enhancements and further increase the

accuracy to 86%. We present a thorough evaluation in Section 6.

5.3 Novel GPU Channel

The DynamIQ CPU design not only adds the L3 shared cache among

all of the processing cores within a cluster, but also allows for

the L3 cache to be shared with any other peripherals contained

within the SoC. This means that peripherals/accelerators like the

Graphics Processing Unit (GPU), Digital Signal Processor (DSP),

and Image Signal Processor (ISP) are all able to impact the shared

cache. In particular, the GPU is heavily utilized to display a web

page to users. Newer web browsers employ hardware acceleration

when rendering and displaying web pages. Elements like HTML5

Canvas, WebGL or WebGL2 animations, and videos are also usually

hardware accelerated. Thus, we endeavor to explore whether the

GPU and shared cache architecture of current ARM DynamIQ can

be exploit to create a website fingerprinting side channel.

It is challenging to construct a GPU cache occupancy channel.

WebGL2 and basic HTML5 canvas elements only update at a low

frequency of 60Hz. While these sampling rates can be increased,

working with the canvas element in a background tab further in-

creases the complexity and overhead. Also, it is not straightforward

to determine the amount of memory that a GPU process consumes.

GPU programming within JavaScript is mainly designed around

graphical interfaces and smooth animations. An ideal attack should

instead perform minimal useless image display, but focus primarily

on exploiting the side channel. Therefore, we utilize a JavaScript

library called GPU.js [16], which is designed to enable the creation

and deployment of GPU computational kernels from JavaScript to

WebGL compatible code. It can reduce the amount of boilerplate

code and other timing elements for an attacker.

We thus create a two-dimensional buffer of data and repeatedly

utilize the GPU to process this buffer with different mathematical

kernels. Unlike our improved cache occupancy channel, accelera-

tor based channels cannot provide us with high granularity mea-

surements. The accelerator based workload requires that the CPU

should first declare the work, pass it to the accelerator (GPU), and

wait until the GPU completes its task. This means that the sizing

and complexity of the kernel task must be tuned for the optimal

fingerprinting performance.

To understand the performance of different settings, we create a

spy script similar in nature to the cache occupancy spy script. The

GPU script reports the number of kernel executions that it can com-

plete in the monitoring time period. We conduct experiments using

multiple kernels, including matrix multiplication and computing

the dot product. We find that the kernel that sums each row of the

input array delivers far superior performance. This might be due

to massively decreased complexity and time in this GPU kernel:

the reduced complexity enables more possible kernel executions,

which in turn leads to better observability of GPU usage. We also

check the optimal size for the computation. The time taken to com-

pute a small kernel might provide minimally useful information

as the GPU startup overhead would dominate the timing, while

a large kernel would take too much time and decrease the obser-

vation granularity. We find that an overall array computation of

between 20KB (Android) and 40KB (MacOS) organized into 5x4KB

or 10x4KB arrays works best. Finally, we examine the observation

window, but limit our experiments to a maximum 10 second du-

ration to maintain a realistic approach. Again, we find disparate

sizes depending on platforms. The Google Pixel 3 provides the best

performance with 500 20ms observations and the M1 MacBook Air

achieves its best results with 1,000 10ms observations. We believe

this is caused by the speed of the processors: the SnapDragon 845

functions much slower and thus requires more time to manifest

observable differences in computation performance as opposed to

simply observing GPU overhead.

6 EVALUATION

In this section, we provide detailed performance results for the

cache occupancy and GPU contention channels. Here we utilize a

much larger dataset containing 100 accesses to 100 sensitive sites

(Alexa Top 100), and 1 access to 5,000 other websites. We report

both closed (only the sensitive websites) and open (all websites)

world accuracy results. As before, to remove any bias from the

experimentation, the collection process is conducted using Appium
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or Selenium automation of the target platform. The list of 15,000

total website accesses is randomized to ensure that there are no

unintentional ordering effects and the same random access order is

utilized for each experiment for better comparison.

To compute the accuracy of the fingerprinting, we utilize 10-fold

cross validation with a 90/10 train/test split. We report accuracy

for two machine learning algorithms, a ridge regression with a

minirocket [8] transform and a minirocket transform with a 1D

CNN (configuration presented in Appendix Table 5). The ridge

regression with minirocket transform is a recent advancement in

time series machine learning and is able to achieve results close to

those of the 1D CNN in less than a minute.

6.1 Web-Based Attack Results

Table 2 presents the accuracy of the web based cache occupancy

fingerprinting experiments. Our approach can achieve promising

results across all of the devices in the closed world scenario (i.e.,

100 sensitive websites), with accuracy ranging from 80% to 95%

when utilizing the ridge regression classifier.

The open world scenario (i.e., 100 sensitive websites and 5,000

non-sensitive websites) also demonstrates high accuracy. In the

open world cases, we find that in most cases the 1D CNN performs

better than the ridge regression classifier. This behavior is expected

as the 1D CNN utilizes multiple convolutional and pooling layers to

extract features from the dataset and learn both spatial and temporal

patterns.

We notice that the cache occupancy channel performs the best

on the Macbook Air, and the worst on the iPhone SE 2. This is likely

related to the design of both the cache systems and schedulers.

The CPU core designs in the MacBook Air are one generation

newer, and the M1 chip is designed specifically for desktop/laptop

workloads, and is likely tuned for multi-process scenarios. Also, the

M1 chip contains features to prevent single cores from dominating

the cache [12], and the A13 has been discovered to use part of the

shared high performance L2 cache as an extra L2 cache for the

low performance cores [11]. Apple also changes the amount of the

cache that the high and low power cores have access to, depending

on the DVFS states of the cores [11].

To analyze these effects, we conduct experiments with different

buffer sizes. The Google Pixel 3 reports 2MB of shared cache, and

we find that a 2MB buffer performs the best in the fingerprinting

task. While the iPhone SE2 is unclear about the actual amount of

shared cache provided to the low power cores, we find that a 4MB

buffer performs the best in both tested configurations. Interestingly,

this 4MB buffer seems to indicate that the cache occupancy channel

is solely utilizing the L2 cache of the low power cores, potentially

implying that Apple schedules foreground browser rendering pro-

cesses to these low power cores or that the ‘extra’ L2 cache that is

shared with the high performance cores is not exclusively owned by

either core type. The Macbook Air, however, demonstrates vastly

different behaviors. Specifically, we find that a 4MB buffer performs

the best for Google Chrome, a 10MB buffer for Mozilla Firefox, and

a 24MB buffer for Apple’s Safari. As previously mentioned, these

differences may be caused by a number of reasons, including dif-

ferent renderers and JavaScript engines. In general, attackers need

to adjust attack strategies based on various factors to achieve high

overall performance.

Another possible factor in the reduced performance of mobile

devices vs. laptops could be the trend of websites to deliver different

pages to different devices. When a laptop visits a website, it views

the entire site that usually contains much more detailed content

than the correspondingmobile website. The vastly simplifiedmobile

websites may appear more similar to the cache occupancy channel,

resulting in the decreased accuracy.

6.2 App-Based Attack Results

We next evaluate the performance of the cache occupancy channel

if the attacker can run in a background process on the device. We

continue to employ a 4ms sample period to provide the most fair

comparison between the browser- and native-based channels and

develop native applications for each platform to enable this testing.

We create applications for the iOS and Android systems featur-

ing two processes, one drives a ‘webview’5 and another acts as

the spy process. This method has been used to study native side

channel performance in website fingerprinting before [36]. On the

Macbook Air, a spy process written in C is launched alongside the

web browser to monitor traffic. The results are listed in Table 3.

Overall, for the Macbook, our method can achieve about 90% ac-

curacy for the closed world dataset, and more than 80% accuracy

for the open world scenario. For other devices, we can also achieve

about 70% accuracy for the open world case.

We also notice an interesting trend, in all but the Firefox browser,

the channel generally performs worse in the native setting. We in-

fer that this reduced performance can potentially be caused by

the idiosyncrasies of the OS scheduler. The scheduler of a mobile

phone aims to provide the best performance to the foreground pro-

cess and imposes strict limitations on background processes. On

the other hand, the scheduler of a laptop/desktop should ensure

more equal scheduling of background processes as they are im-

portant to user satisfaction (severely diminishing the performance

of background file sync, application updates/installs, etc. would

be unacceptable). MacOS, specifically, offers a number of different

process priorities that have recently been shown to greatly affect

which cores a specific task is executed on [38] and thus mixing

native and web browser processes may result in unexpected sched-

uling. While the process in a background tab is very likely to end

up on the low power cores, the native process may be scheduled

on either core, depending on how the operating system interprets

its priority/whether it is a user-facing process.

6.3 Comparison to Prior Work

The cache occupancy channel has been studied from the perspective

of website fingerprinting attacks before, however, those attacks

utilize variable timing windows and gather data over the course

of 30 seconds [49, 50]. Instead, our work improves upon both the

amount of data and attack duration dramatically, utilizing 4ms

attack periods over the course of only 8 seconds. Reducing the total

attack time by 75% improves the practicality of the attack, as it is

5Both iOS and Android provide a mechanism called a webview to display web content
to users within an application. The webview functions as a web browser without the
navigation controls. Both iOS and Android webview components are nearly identical
to the system web browser.
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Table 2: Accuracy for web-based cache occupancy website fingerprint on multiple ARM devices

Device CPU Browser
Closed World Open World

Ridge Regression CNN Ridge Regression CNN

Macbook Air Apple M1 Chrome 89 95.6 92.2 88.1 89.8

Macbook Air Apple M1 Safari 14 94.3 89.4 78.4 85.1

Macbook Air Apple M1 Firefox 88 88.1 83.9 68.2 77.8

iPhone SE 2 Apple A13 Safari 14 80.2 75.3 65.8 72.7

iPhone SE 2 Apple A13 Chrome 87 80.2 75.9 65.0 73.3

Google Pixel 3 Snapdragon 845 Chrome 90 88.0 81.8 66.0 75.9

Table 3: Accuracy for native application cache occupancy website fingerprint on multiple ARM devices

Device CPU Browser
Closed World Open World

Ridge Regression CNN Ridge Regression CNN

Macbook Air Apple M1 Chrome 89 92.5 85.7 84.1 84.3

Macbook Air Apple M1 Safari 14 91.1 87.0 72.4 81.7

Macbook Air Apple M1 Firefox 88 90.3 87.1 70.5 81.3

iPhone SE 2 Apple A13 WebKit View 71.5 68.7 64.0 69.1

Google Pixel 3 Snapdragon 845 WebView 81.9 76.3 67.7 74.1

Table 4: Accuracy for GPU based website fingerprinting on ARM devices

Device GPU Browser
Closed World Open World

Ridge Regression CNN Ridge Regression CNN

Macbook Air Apple 7 Core Chrome 89 90.5 85.3 76.6 81.4

Google Pixel 3 Adreno 630 Chrome 89 88.2 82.6 67.6 77.3

unlikely that a user will navigate to a page and not interact with it

for 30 seconds. Furthermore, this work conducts the most extensive

study of the cache occupancy channel on ARM to date, examining

both native and web based attacks, providing an in depth discussion

of cross-platform accuracy enhancements. We also study multiple

MacOS and iOS browsers and this is the first work to explore such

a cache cache occupancy channel on iOS.

The only direct comparison that can be made is the performance

of the closed world attack for the Chrome browser on the M1 chip,

wherein this work performs 6.5% better in Top-1 accuracy than the

work in [49]. Our Android performance is also 4.1% better (also

Top-1 accuracy) in the closed world setting, though the devices are

different.

We also compare to previous works done on homogeneous x86

systems like those in [50]. Our work, with the optimizations de-

veloped for the ARM architecture, achieves better results. The per-

formance of our open world attack on Safari is 5.7% better than

their best neural network configuration, and the closed world at-

tack is 29.9% better (Top-1 accuracy). One item that complicates

comparison to [50] is their open world data. Their work claims

99% accuracy in delineating between a sensitive and non-sensitive

website, which could indicate significant differences between the

open and closed world datasets. By contrast, our work combines

and randomizes the order of the collection of the open and closed

world datasets to ensure that there are no cross-sample ordering

artifacts that might artificially increase accuracy.

6.4 GPU Channel Results

We utilize the same testing setup as the cache occupancy channel

to evaluate the GPU contention channel. We only modify the spy

process to utilize the GPU as opposed to the CPU. While all major

browsers support web workers, only Google Chrome on Android

and MacOS allowed for unrestricted access to the GPU in a back-

ground web worker via GPU.js, thus limiting our experiments to

these two platforms. The results are listed in Table 4. Overall, our

novel GPU channel can achieve similar results as the standard cache

occupancy channel. On MacOS, it can still achieve more than 90%

accuracy on the closed world case, and more than 81% accuracy

for the open world one. The accuracy on Android is even better: it

lightly improves the accuracy in both the open and closed world

scenarios compared with the standard cache occupancy channel.

This difference may be related to the different system architectures

that make up the Adreno GPU vs. the Apple designed GPU found

on the M1 chip.

These results strongly indicate that the GPU/cache contention

channel is capable of mounting website fingerprinting attacks and

should serve as a red flag to device manufacturers. As more ac-

celerators are tightly integrated into the standard ARM SoC and

web technologies rush to enable access (e.g., WebGPU [52]), special

attention should be taken to ensure that these additions do not

jeopardize user privacy.
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6.5 Countermeasures

There are several approaches to potentially protect an ARM system

from those contention based side channels. For example, the system

can introduce noise to the measurement channel via extra opera-

tions, or manipulate timers and array accesses via obfuscation such

as in Chrome Zero [45]. However, introducing extra noise has been

shown ineffective [50] and leads to increased energy usage, which

is unacceptable for mobile devices. Also, Shusterman et al. [49]

demonstrated that the protections of Chrome Zero is largely inef-

fective and impose significant performance penalties. Furthermore,

browser based defenses cannot thwart App-based attacks.

Another defensive approach for energy restricted devices is to

remove process contention via hardware segmentation. This can

guarantee that the processes are unable to interact with one another.

However, it requires complete redesigns of the operating system

scheduler and hardware. In our future work, we plan to develop

effective defensive solutions to detect significant contention and

large swings in cache occupancy (similar to [2]) for ARM devices.

7 RELATED WORK

In this section, we briefly survey the research efforts in related

areas. Specifically, we conduct a detailed comparison with previous

cache occupancy fingerprinting techniques.

Cache Occupancy. The most similar work is Shusterman’s cache

occupancy fingerprinting work [49, 50]. Their work is the first at-

tempt to exploit a cache occupancy channel for website fingerprint-

ing. While previous work [18] examined the individual eviction sets,

these fine-grained attacks can be mitigated by modern browsers by

limiting time resolution. Shusterman et al. [50] proposed that the

contention of the entire cache may provide enough information

to fingerprint websites within the x86 platform. In parallel to our

work, Shusterman et al. [49] performed a cursory investigation of

the cache occupancy channel on the Apple M1 and a Samsung S21

with the Chrome browser in a closed world scenario.

Our work provides a much deeper investigation of the cache

occupancy channel in ARM devices. In addition to Android and

MacOS, we also study the iOS platform. Furthermore, our approach

differs from Shusterman’s in that we develop a vastly different

method for cache accesses (Section 5.2), which increases accuracy

on budget devices with slower processors. We also study the effect

of different browsers and their memory management, demonstrat-

ing that simply sizing the eviction buffer based on the shared cache

provides suboptimal results in different browser engines on the

same hardware (Section 6.1). Besides, we increase the attack effec-

tiveness, utilizing only 8 seconds of observation time to identify a

website unlike the previously required 30 seconds in both [49, 50].

Even with nearly 75% less sampling time, our approach outper-

forms the Shusterman’s work by more than 6% in Top-1 accuracy

in testing on the M1 MacBook Air with Google Chrome. Finally, we

propose and evaluate the novel GPU based contention channel and

demonstrate that it is nearly as effective as the cache occupancy

channel in ARM SoC devices, raising the alarm on continued access

to SoC accelerator components from JavaScript.

Website Fingerprinting Website fingerprinting has long been

used to track user web surfing behaviors. As desktop browsers

are the original way to surf the web, many website fingerprinting

techniques focus on breaking privacy enhancing technologies like

HTTPS and ToR, which leverage features extracted from the packet

streams [4, 14, 20, 41, 43]. With the rise of mobile devices, more

efforts have been spent examining mobile web surfing. Magnetic-

Spy [36] examines both JavaScript and app based CPU activity chan-

nels by employing the magnetometer. They perform similar open

and closed world investigations (albeit with fewer websites), and

demonstrate high fingerprinting accuracy. However, the JavaScript

APIs that allow access to these sensors have since been removed

from support in Firefox and Safari [48]. Furthermore, iOS requires

that users explicitly grant permissions to a website before it is

allowed to access their accelerometer data [24]. Several previous

works [26, 53] explore power based website fingerprinting on smart-

phones, however they require much higher sampling frequencies

and cannot perform the fingerprinting from a JavaScript platform.

Jana et al. [21] studied the memory allocations of website traffic, but

required privileged access to process memory data (now removed

from standard user access). Spreitzer et al. [51] utilized the data

usage API within Android to fingerprint websites, but this must be

done from a native application.

ARM Attacks Gulmezoglu et al. [18] built a similar contention

based channel in ARM devices, but mainly focused on finding con-

tention among specific sets within the cache ways of the device.

Their attack is limited to the Google Pixel 5, and only utilizes native

APIs within the system. While the work presents impressive results,

their system relies upon identifying eviction sets within the cache.

With a high resolution timer, this can take a few seconds; however,

the low resolution timer available from JavaScript [42] would make

the time cost of the task prohibitively long. Lipp et al. [28] and

Gruss et al. [17] similarly constructed memory based JavaScript at-

tacks, but require either privileged system calls or higher resolution

timers than those currently available in modern browsers [42].

Timing Attacks from JavaScript Genkin et al. [13] executed en-

cryption side channel attacks from a browser but utilized web

assembly and shared array buffers to construct a high frequency

timer. Oren et al. [39] similarly demonstrated that eviction sets

could be created via JavaScript timers for website fingerprinting

(not on ARM). Bosman et al. [3] demonstrated page deduplication at-

tacks from JavaScript. Each of these attacks requires high resolution

timers that have since been removed from JavaScript [42]. Schwarz

et al. [46] demonstrated some interesting methods to achieve high

resolution timing, but many of these techniques have been disabled

or hindered within major browsers.

GPU Attacks Lee et al. [25] proposed to exploit the shared mem-

ory within the GPU for website fingerprinting. Frigo et al. [10]

executed several side channel attacks from a mobile GPU. However,

these attacks require timing primitives that have been removed.

He et al. [19] uncovered a register leakage within Intel GPUs and

exploited it to identify websites. Naghibijouybari et al. [37] utilized

GPU memory allocation APIs within CUDA or OpenGL to track

memory allocations and fingerprint websites. They did not explore

ARM integrated GPUs or execution from a JavaScript environment

and instead employed a spy program that ran as a native process

with full access to CUDA/OpenGL. Karimi et al. [22] proposed a
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side channel attack against an ARM SoC GPU and extracted AES

keys by exploiting cache behaviors; however, the attack requires

a long execution time and a stable system that does not run other

tasks. Moreover, the study was not conducted from a JavaScript

perspective.

8 CONCLUSION

This paper investigates whether the new ARM DynamIQ system

design, specifically the inclusion of a shared last-level cache be-

tween all CPU cores and accelerators, poses a security threat to

individuals. We examine the information leakage in the context of

a website fingerprinting attack, demonstrating that a cache occu-

pancy side channel can be constructed to reliably fingerprint user

website activities. We reveal this security threat on Android, iOS,

and MacOS, delving into how the channel responds to different

browser environments and proposing enhancements over previous

works. In addition, we unveil an accelerator based website finger-

printing channel, showing that the SoC GPU can be exploited in

a contention based side channel from JavaScript. Our evaluation

results indicate that both channels can achieve high website fin-

gerprinting accuracy on different browsers in Android, iOS, and

MacOS systems in both open and closed world scenarios.
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Appendices

Table 5: 1D Convolutional Neural Network Configuration

Fingerprinting Classification Network

Layer Operation Kernel Size

1 Input 10000x1

2 Convolution 256x8

3 MaxPool 8

4 Convolution 256x8

5 MaxPool 8

6 Convolution 256x8

7 MaxPool 8

8 Flatten -

10 Dropout 0.2

11 Dense Number of Classes
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